|
"""A simple, flexible implementation of a GPT model. |
|
|
|
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py |
|
""" |
|
from __future__ import annotations |
|
import math |
|
import warnings |
|
from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from .attention import is_flash_v2_installed |
|
from .norm import NORM_CLASS_REGISTRY |
|
if is_flash_v2_installed(): |
|
try: |
|
from flash_attn import bert_padding |
|
from flash_attn.layers.rotary import RotaryEmbedding as DAILRotaryEmbedding |
|
except Exception as e: |
|
raise e |
|
from transformers import PreTrainedModel, PreTrainedTokenizerBase |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.models.llama.modeling_llama import LlamaDynamicNTKScalingRotaryEmbedding as HFDynamicNTKScalingRotaryEmbedding |
|
from transformers.models.llama.modeling_llama import LlamaLinearScalingRotaryEmbedding as HFLinearScalingRotaryEmbedding |
|
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding as HFRotaryEmbedding |
|
from .attention import attn_bias_shape, build_attn_bias, gen_slopes |
|
from .blocks import MPTBlock |
|
from .custom_embedding import SharedEmbedding |
|
from .ffn import build_ffn as build_ffn |
|
from .configuration_mpt import MPTConfig |
|
from .meta_init_context import init_empty_weights |
|
from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY |
|
from .act_ckpt import pass_on_block_idx, build_act_ckpt_mod_to_blocks, check_mapping_blocks_overlap |
|
import logging |
|
log = logging.getLogger(__name__) |
|
|
|
def gen_rotary_embedding(rope_head_dim: int, rope_impl: str, rope_theta: int, rope_dail_config: dict, rope_hf_config: dict, max_seq_len: int): |
|
if rope_impl == 'dail': |
|
return DAILRotaryEmbedding(dim=rope_head_dim, base=rope_theta, interleaved=False, scale_base=rope_dail_config['xpos_scale_base'] if rope_dail_config['type'] == 'xpos' else None, pos_idx_in_fp32=rope_dail_config['pos_idx_in_fp32'], device='cpu') |
|
elif rope_impl == 'hf': |
|
if rope_hf_config['type'] == 'no_scaling': |
|
return HFRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, device='cpu') |
|
elif rope_hf_config['type'] == 'linear': |
|
return HFLinearScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu') |
|
elif rope_hf_config['type'] == 'dynamic': |
|
return HFDynamicNTKScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu') |
|
raise ValueError('rope_impl needs to be either dail or hf') |
|
|
|
def gen_attention_mask_in_length(sequence_id: Union[None, torch.Tensor], S: int, attn_uses_sequence_id: bool, attn_impl: str, attention_mask: Union[torch.Tensor, None]): |
|
"""Generates the attention mask used for sequence masking in FA v2. |
|
|
|
Only supports sequence id based sparse attention for no attention masking or attention masking with right padding. |
|
In case of left padding: |
|
1. Training with left padding is not supported in MPT (see https://github.com/mosaicml/llm-foundry/blob/1eecd4cb8e734499f77f6a35f657b8b20c0adfcb/llmfoundry/models/mpt/modeling_mpt.py#L407). |
|
2. For generation with left padding, we only have a single sequence id per sample, so we don't need sequence id based sparse attention. |
|
|
|
Args: |
|
sequence_id (Union[None, torch.Tensor]): Tensor containing the sequence id for each token. Shape (batch_size, seq_len). |
|
S (int): Sequence length |
|
attn_uses_sequence_id (bool): Whether the attention uses sequence id based masking. |
|
attn_impl (str): Attention implementation. This function is only creates attention_mask_in_length for flash attention. |
|
attention_mask (Union[torch.Tensor, None]): Attention mask tensor of shape (batch_size, seq_len) |
|
|
|
Returns: |
|
attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is: |
|
``` |
|
[ |
|
[2, 3, 0, 0, 0, 0], |
|
[3, 2, 0, 0, 0, 0], |
|
[6, 0, 0, 0, 0, 0] |
|
] |
|
``` |
|
, which refers to the 3D-attention mask: |
|
``` |
|
[ |
|
[ |
|
[1, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[0, 0, 1, 0, 0, 0], |
|
[0, 0, 1, 1, 0, 0], |
|
[0, 0, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 1] |
|
], |
|
[ |
|
[1, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[0, 0, 0, 1, 0, 0], |
|
[0, 0, 0, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 1] |
|
], |
|
[ |
|
[1, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 1, 0, 0], |
|
[1, 1, 1, 1, 1, 0], |
|
[1, 1, 1, 1, 1, 1] |
|
] |
|
] |
|
```. |
|
(The description above is taken verbatim from https://github.com/Dao-AILab/flash-attention/blob/9356a1c0389660d7e231ff3163c1ac17d9e3824a/flash_attn/bert_padding.py#L125 .) |
|
""" |
|
attention_mask_in_length = None |
|
if sequence_id is not None and attn_uses_sequence_id and (attn_impl == 'flash'): |
|
if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0]: |
|
raise NotImplementedError('Left padding is not supported with flash attention when attn_uses_sequence_id is set to True.') |
|
if S != sequence_id.shape[-1]: |
|
raise ValueError(f'Sequence length ({S}) does not match length of sequences in sequence_id ({sequence_id.shape[-1]}).') |
|
if attention_mask is not None: |
|
sequence_id = sequence_id.masked_fill(~attention_mask, 0) |
|
attention_mask_in_length = torch.nn.functional.one_hot(sequence_id) |
|
if attention_mask is not None: |
|
attention_mask_in_length = attention_mask_in_length.masked_fill(~attention_mask.unsqueeze(-1), 0) |
|
attention_mask_in_length = attention_mask_in_length.sum(dim=1) |
|
attention_mask_in_length = torch.nn.functional.pad(attention_mask_in_length, (0, S - attention_mask_in_length.shape[-1]), mode='constant', value=0) |
|
return attention_mask_in_length |
|
|
|
def gen_flash_attn_padding_info(bsz: int, S: int, past_key_len: int, device: torch.device, attention_mask_in_length: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None): |
|
flash_attn_padding_info = {} |
|
if attention_mask_in_length is None: |
|
key_padding_mask = attention_mask |
|
if key_padding_mask is None: |
|
key_padding_mask = torch.ones((bsz, past_key_len + S), dtype=torch.bool, device=device) |
|
query_padding_mask = key_padding_mask[:, -S:] |
|
unpadding_function = bert_padding.unpad_input |
|
else: |
|
key_padding_mask = attention_mask_in_length |
|
query_padding_mask = attention_mask_in_length |
|
unpadding_function = bert_padding.unpad_input_for_concatenated_sequences |
|
_, indices_q, cu_seqlens_q, max_seqlen_q = unpadding_function(torch.empty(bsz, S, 1, device=device), query_padding_mask) |
|
_, indices_k, cu_seqlens_k, max_seqlen_k = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask) |
|
_, indices_v, _, _ = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask) |
|
flash_attn_padding_info['indices_q'] = indices_q |
|
flash_attn_padding_info['indices_k'] = indices_k |
|
flash_attn_padding_info['indices_v'] = indices_v |
|
flash_attn_padding_info['cu_seqlens_q'] = cu_seqlens_q |
|
flash_attn_padding_info['cu_seqlens_k'] = cu_seqlens_k |
|
flash_attn_padding_info['max_seqlen_q'] = max_seqlen_q |
|
flash_attn_padding_info['max_seqlen_k'] = max_seqlen_k |
|
return flash_attn_padding_info |
|
|
|
def apply_sequence_id(attn_bias: torch.Tensor, sequence_id: torch.LongTensor, max_seq_len: int) -> torch.Tensor: |
|
seq_len = sequence_id.shape[-1] |
|
if seq_len > max_seq_len: |
|
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={max_seq_len}') |
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
return attn_bias |
|
|
|
class MPTPreTrainedModel(PreTrainedModel): |
|
config_class = MPTConfig |
|
base_model_prefix = 'model' |
|
_no_split_modules = ['MPTBlock'] |
|
|
|
def _fsdp_wrap_fn(self: Union[MPTModel, MPTForCausalLM], module: nn.Module) -> bool: |
|
return isinstance(module, MPTBlock) |
|
|
|
class MPTModel(MPTPreTrainedModel): |
|
|
|
def __init__(self, config: MPTConfig): |
|
config._validate_config() |
|
super().__init__(config) |
|
self.attn_impl = config.attn_config['attn_impl'] |
|
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id'] |
|
self.alibi = config.attn_config['alibi'] |
|
self.alibi_bias_max = config.attn_config['alibi_bias_max'] |
|
self.learned_pos_emb = config.learned_pos_emb |
|
if config.init_device == 'mixed': |
|
if dist.get_local_rank() == 0: |
|
config.init_device = 'cpu' |
|
else: |
|
config.init_device = 'meta' |
|
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): |
|
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys()) |
|
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).') |
|
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] |
|
self.embedding_fraction = config.embedding_fraction |
|
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device) |
|
if self.learned_pos_emb: |
|
self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device) |
|
self.emb_drop = nn.Dropout(config.emb_pdrop) |
|
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)]) |
|
for i, block in enumerate(self.blocks): |
|
block.block_idx = i |
|
block.max_block_idx = config.n_layers - 1 |
|
pass_on_block_idx(block) |
|
self.norm_f = norm_class(config.d_model, device=config.init_device) |
|
self.rope = config.attn_config['rope'] |
|
self.rope_impl = None |
|
if self.rope: |
|
self.rope_impl = config.attn_config['rope_impl'] |
|
self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len) |
|
if config.init_device != 'meta': |
|
log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.') |
|
self.apply(self.param_init_fn) |
|
self.is_causal = True |
|
self._attn_bias_initialized = False |
|
self.attn_bias = None |
|
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id) |
|
if config.no_bias: |
|
for module in self.modules(): |
|
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter): |
|
log.info(f'Removing bias from module={module!r}.') |
|
module.register_parameter('bias', None) |
|
if hasattr(module, 'use_bias'): |
|
log.info(f'Setting use_bias=False for module={module!r}.') |
|
module.use_bias = False |
|
log.debug(self) |
|
log.debug(f"Using {self.config.init_config['name']} initialization.") |
|
|
|
def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]: |
|
return self.wte |
|
|
|
def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None: |
|
self.wte = value |
|
|
|
@torch.no_grad() |
|
def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]: |
|
if not self._attn_bias_initialized: |
|
if self.attn_bias_shape: |
|
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype) |
|
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max) |
|
self._attn_bias_initialized = True |
|
if self.attn_impl == 'flash': |
|
return (self.attn_bias, attention_mask) |
|
if self.attn_bias is not None: |
|
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) |
|
attn_bias = self.attn_bias |
|
if self.attn_uses_sequence_id and sequence_id is not None: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
attn_bias = apply_sequence_id(attn_bias, sequence_id, self.config.max_seq_len) |
|
if attention_mask is not None: |
|
s_k = attention_mask.shape[-1] |
|
if attn_bias is None: |
|
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) |
|
else: |
|
_s_k = max(0, attn_bias.size(-1) - s_k) |
|
attn_bias = attn_bias[:, :, :, _s_k:] |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val) |
|
return (attn_bias, attention_mask) |
|
|
|
def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast: |
|
return_dict = return_dict if return_dict is not None else self.config.return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.bool() |
|
if not return_dict: |
|
raise NotImplementedError('return_dict False is not implemented yet for MPT') |
|
if output_attentions: |
|
if self.attn_impl != 'torch': |
|
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash`.') |
|
if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]): |
|
raise NotImplementedError('MPT does not support training with left padding.') |
|
if self.training: |
|
if self.attn_uses_sequence_id and sequence_id is None: |
|
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.') |
|
elif self.attn_uses_sequence_id is False and sequence_id is not None: |
|
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.') |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError('You cannot specify both input_ids and inputs_embeds.') |
|
elif input_ids is not None: |
|
bsz = input_ids.size(0) |
|
S = input_ids.size(1) |
|
x = self.wte(input_ids) |
|
input_device = input_ids.device |
|
elif inputs_embeds is not None: |
|
bsz = inputs_embeds.size(0) |
|
S = inputs_embeds.size(1) |
|
x = inputs_embeds |
|
input_device = inputs_embeds.device |
|
else: |
|
raise ValueError('You must specify input_ids or inputs_embeds') |
|
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' |
|
rotary_emb_w_meta_info = None |
|
past_position = 0 |
|
if past_key_values is not None: |
|
if len(past_key_values) != self.config.n_layers: |
|
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).') |
|
past_position = past_key_values[0][0].size(1) |
|
if self.attn_impl == 'torch': |
|
past_position = past_key_values[0][0].size(3) |
|
if self.learned_pos_emb or self.rope: |
|
if self.learned_pos_emb and S + past_position > self.config.max_seq_len: |
|
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.') |
|
if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'): |
|
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0) |
|
if attention_mask is not None: |
|
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0) |
|
if self.learned_pos_emb: |
|
x = x + self.wpe(pos) |
|
elif self.rope and self.rope_impl == 'hf': |
|
rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position} |
|
elif self.rope and self.rope_impl == 'dail': |
|
rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position} |
|
if self.embedding_fraction == 1: |
|
x = self.emb_drop(x) |
|
else: |
|
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction) |
|
assert isinstance(self.emb_drop, nn.Module) |
|
x = self.emb_drop(x_shrunk) |
|
attn_bias, attention_mask = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, sequence_id=sequence_id) |
|
attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask) |
|
alibi_slopes = None |
|
if self.alibi and self.attn_impl == 'flash': |
|
alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True) |
|
presents = () if use_cache else None |
|
if use_cache and past_key_values is None: |
|
past_key_values = [() for _ in range(self.config.n_layers)] |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
flash_attn_padding_info = {} |
|
if self.attn_impl == 'flash': |
|
flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask) |
|
for b_idx, block in enumerate(self.blocks): |
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states = all_hidden_states + (x,) |
|
past_key_value = past_key_values[b_idx] if past_key_values is not None else None |
|
x, attn_weights, present = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info) |
|
if presents is not None: |
|
presents += (present,) |
|
if output_attentions: |
|
assert all_self_attns is not None |
|
all_self_attns = all_self_attns + (attn_weights,) |
|
x = self.norm_f(x) |
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states = all_hidden_states + (x,) |
|
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns) |
|
|
|
def param_init_fn(self, module: nn.Module) -> None: |
|
init_fn_name = self.config.init_config['name'] |
|
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) |
|
|
|
def fsdp_wrap_fn(self, module: nn.Module) -> bool: |
|
return _fsdp_wrap_fn(self, module) |
|
|
|
def activation_checkpointing_fn(self, module: nn.Module) -> bool: |
|
return isinstance(module, MPTBlock) |
|
|
|
class MPTForCausalLM(MPTPreTrainedModel): |
|
|
|
def __init__(self, config: MPTConfig): |
|
super().__init__(config) |
|
log.info(f'Instantiating an MPTForCausalLM model from {__file__}') |
|
self.transformer: MPTModel = MPTModel(config) |
|
self.lm_head = None |
|
if not config.tie_word_embeddings: |
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device) |
|
self.lm_head._fsdp_wrap = True |
|
for child in self.transformer.children(): |
|
if isinstance(child, torch.nn.ModuleList): |
|
continue |
|
if isinstance(child, torch.nn.Module): |
|
child._fsdp_wrap = True |
|
self.logit_scale = None |
|
if config.logit_scale is not None: |
|
logit_scale = config.logit_scale |
|
if isinstance(logit_scale, str): |
|
if logit_scale == 'inv_sqrt_d_model': |
|
logit_scale = 1 / math.sqrt(config.d_model) |
|
else: |
|
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") |
|
self.logit_scale = logit_scale |
|
|
|
def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]: |
|
return self.transformer.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None: |
|
self.transformer.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self) -> Union[SharedEmbedding, nn.Embedding, nn.Linear]: |
|
if self.lm_head is not None: |
|
return self.lm_head |
|
return self.transformer.get_input_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding, nn.Linear]) -> None: |
|
if self.lm_head is not None: |
|
self.lm_head = new_embeddings |
|
else: |
|
if not isinstance(new_embeddings, (SharedEmbedding, nn.Embedding)): |
|
raise ValueError('new_embeddings must be an instance of SharedEmbedding ' + f'or nn.Embedding, but got {type(new_embeddings)}.') |
|
warnings.warn('Using `set_output_embeddings` to set the embedding layer of ' + 'MPTForCausalLM with tied weights. Given weights are tied, ' + 'using `set_input_embeddings` is recommended over using ' + '`set_output_embeddings`.') |
|
self.transformer.set_input_embeddings(new_embeddings) |
|
|
|
def tie_weights(self) -> None: |
|
if getattr(self.config, 'tie_word_embeddings', True): |
|
self.lm_head = None |
|
|
|
def set_decoder(self, decoder: MPTModel) -> None: |
|
self.transformer = decoder |
|
|
|
def get_decoder(self) -> MPTModel: |
|
return self.transformer |
|
|
|
def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast: |
|
return_dict = return_dict if return_dict is not None else self.config.return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, inputs_embeds=inputs_embeds) |
|
if self.lm_head is not None: |
|
logits = self.lm_head(outputs.last_hidden_state) |
|
else: |
|
out = outputs.last_hidden_state |
|
out = out.to(self.transformer.wte.weight.device) |
|
logits = self.transformer.wte(out, True) |
|
if self.logit_scale is not None: |
|
if self.logit_scale == 0: |
|
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.') |
|
logits *= self.logit_scale |
|
loss = None |
|
if labels is not None: |
|
_labels = torch.roll(labels, shifts=-1) |
|
_labels[:, -1] = -100 |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1)) |
|
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions) |
|
|
|
def param_init_fn(self, module: nn.Module) -> None: |
|
init_fn_name = self.config.init_config['name'] |
|
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) |
|
|
|
def fsdp_wrap_fn(self, module: nn.Module) -> bool: |
|
return _fsdp_wrap_fn(self, module) |
|
|
|
def activation_checkpointing_fn(self, module: nn.Module) -> bool: |
|
"""The MPT activation checkpointing (act ckpt) function. |
|
|
|
When `activation_checkpointing` in fsdp_config is set to true, this function will be called on all the modules in the FSDP wrapped model and determine whether a given module should be activation checkpointed. It checks the checkpointing target (`activation_checkpointing_target` in `model`) which can be specified as below: |
|
1. null (or no such field): The whole MPTBlock will be activation checkpointed on all layers |
|
2. a list of modules to act ckpt on all layers, e.g., |
|
activation_checkpointing_target: |
|
- grouped_query_attention |
|
- mptmlp |
|
3. a dictionary of module name with target_blocks, e.g., |
|
activation_checkpointing_target: |
|
{ |
|
"mptblock": target_blocks_1, |
|
"grouped_query_attention": target_blocks_2 |
|
} |
|
target_blocks (target_blocks_1, target_blocks_2 above) can be: |
|
- a single integer n: the first n transformer block will be activation checkpointed |
|
- a string of first-n, middle-m, last-k, range-i-j: the first n, the middle m, the last k, or the range [i, j) layers will be activation checkpointed. E.g, 'first-2, last-2' means the first 2 and last 2 transformer blocks will be activation checkpointed |
|
middle-m is range [start, end) where ``start = max(max_block_idx // 2 - m // 2, 0), end = min(start + m, max_block_idx + 1)`` |
|
- a list of integers corresponds to the list of transformer block ids, e.g., [2] means the second transformer block will be activation checkpointed. [2, 3] means the second and third transformer blocks will be activation checkpointed |
|
- a list of mixed integers and strings of first-n, middle-m, last-k, range-i-j |
|
|
|
An example in yaml config file: |
|
fsdp_config: |
|
activation_checkpointing: true |
|
model: |
|
activation_checkpointing_target: |
|
{ |
|
"mptblock": 'first-5', |
|
"grouped_query_attention": 'last-35' |
|
} |
|
""" |
|
if not hasattr(module, 'block_idx'): |
|
log.debug(f'{module.__class__.__name__} cannot be activation checkpointed. Only transformer block or its submodules are eligible for activation checkpointing.') |
|
return False |
|
act_ckpt_target = getattr(self.config, 'activation_checkpointing_target', None) |
|
act_ckpt_mod_to_blocks = build_act_ckpt_mod_to_blocks(act_ckpt_target, MPTBlock, module.max_block_idx) |
|
check_mapping_blocks_overlap(act_ckpt_mod_to_blocks, module.max_block_idx) |
|
for k in act_ckpt_mod_to_blocks.keys(): |
|
if isinstance(module, k): |
|
blocks = act_ckpt_mod_to_blocks[k] |
|
return True if blocks == -1 else module.block_idx in blocks |
|
return False |
|
|
|
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]: |
|
attention_mask = kwargs['attention_mask'].bool() |
|
if attention_mask[:, -1].sum() != attention_mask.shape[0]: |
|
raise NotImplementedError('MPT does not support generation with right padding.') |
|
if self.transformer.attn_uses_sequence_id and self.training: |
|
sequence_id = torch.zeros_like(input_ids[:1]) |
|
else: |
|
sequence_id = None |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {'inputs_embeds': inputs_embeds} |
|
else: |
|
model_inputs = {'input_ids': input_ids} |
|
model_inputs.update({'attention_mask': attention_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]: |
|
"""Used by HuggingFace generate when using beam search with kv-caching. |
|
|
|
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 |
|
for an example in transformers. |
|
""" |
|
reordered_past = [] |
|
for layer_past in past_key_values: |
|
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))] |
|
return reordered_past |