Text Generation
Transformers
PyTorch
mpt
Composer
MosaicML
llm-foundry
custom_code
text-generation-inference
mpt-7b-chat / data.py
irenedea's picture
LLM-foundry update March 26, 2024 23:50:31
ab2b3bb verified
raw
history blame
3.91 kB
"""Datasets for converting to MDS Shards."""
import os
import warnings
from typing import Dict, Iterable, Union
import datasets as hf_datasets
import numpy as np
from torch.utils.data import IterableDataset
from transformers import PreTrainedTokenizerBase
class NoConcatDataset(IterableDataset):
"""An IterableDataset that returns text samples for MDSWriter.
Returns dicts of {'text': bytes}
"""
def __init__(self, hf_dataset: Union[hf_datasets.IterableDataset, hf_datasets.Dataset]):
self.hf_dataset = hf_dataset
def __iter__(self) -> Iterable[Dict[str, bytes]]:
for sample in self.hf_dataset:
yield {'text': sample['text'].encode('utf-8')}
class ConcatTokensDataset(IterableDataset):
"""An IterableDataset that returns token samples for MDSWriter.
Returns dicts of {'tokens': bytes}
To use data created by this class and written to MDS format:
```python
import torch
from streaming.base import StreamingDataset
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('your/tokenizer')
ds = StreamingDataset(local='mds-data-folder', split='val')
# note, you need to copy the numpy array because the original is non-writeable
# and torch does not support non-writeable tensors, so you get a scary warning and
# if you do try to write to the tensor you get undefined behavior
tokens = torch.from_numpy(np.frombuffer(ds[0]['tokens'], dtype=np.int64).copy())
print(tokenizer.decode(tokens))
```
"""
def __init__(self, hf_dataset: Union[hf_datasets.IterableDataset, hf_datasets.Dataset], tokenizer: PreTrainedTokenizerBase, max_length: int, bos_text: str, eos_text: str, no_wrap: bool):
self.hf_dataset = hf_dataset
self.tokenizer = tokenizer
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
self.max_length = max_length
self.bos_text = bos_text
self.eos_text = eos_text
self.should_wrap = not no_wrap
self.bos_tokens = self.tokenizer(self.bos_text, truncation=False, padding=False, add_special_tokens=False)['input_ids']
if len(self.bos_tokens) > 1:
warnings.warn(f'You specified --concat_tokens with --bos_text, but your BOS text is not tokenizing to one token , instead we got {self.bos_tokens}. Quit if this was in error.')
self.eos_tokens = self.tokenizer(self.eos_text, truncation=False, padding=False, add_special_tokens=False)['input_ids']
if len(self.eos_tokens) > 1:
warnings.warn(f'You specified --concat_tokens with --eos_text, but your EOS text is not tokenizing to one token , instead we got {self.eos_tokens}. Quit if this was in error.')
eos_text_provided = self.eos_text != ''
bos_text_provided = self.bos_text != ''
test_text = self.tokenizer('')
if len(test_text['input_ids']) > 0 and (eos_text_provided or bos_text_provided):
message = 'both eos and bos' if eos_text_provided and bos_text_provided else 'eos_text' if eos_text_provided else 'bos_text'
warnings.warn(f'The provided tokenizer adds special tokens, but you also specified {message}. This may result ' + 'in duplicated special tokens. Please be sure this is what you intend.')
def __iter__(self) -> Iterable[Dict[str, bytes]]:
buffer = []
for sample in self.hf_dataset:
encoded = self.tokenizer(sample['text'], truncation=False, padding=False)
iids = encoded['input_ids']
buffer = buffer + self.bos_tokens + iids + self.eos_tokens
while len(buffer) >= self.max_length:
concat_sample = buffer[:self.max_length]
buffer = buffer[self.max_length:] if self.should_wrap else []
yield {'tokens': np.asarray(concat_sample).tobytes()}