Text Generation
Transformers
PyTorch
mpt
Composer
MosaicML
llm-foundry
custom_code
text-generation-inference
mpt-7b-chat / huggingface_hub_utils.py
irenedea's picture
LLM-foundry update March 26, 2024 23:50:31
ab2b3bb verified
raw
history blame
4.81 kB
import ast
import importlib
import os
from typing import Optional, Sequence
class DeleteSpecificNodes(ast.NodeTransformer):
def __init__(self, nodes_to_remove: list[ast.AST]):
self.nodes_to_remove = nodes_to_remove
def visit(self, node: ast.AST) -> Optional[ast.AST]:
if node in self.nodes_to_remove:
return None
return super().visit(node)
def convert_to_relative_import(module_name: str, original_parent_module_name: Optional[str]) -> str:
parts = module_name.split('.')
if parts[-1] == original_parent_module_name:
return '.'
return '.' + parts[-1]
def find_module_file(module_name: str) -> str:
if not module_name:
raise ValueError(f'Invalid input: module_name={module_name!r}')
module = importlib.import_module(module_name)
module_file = module.__file__
if module_file is None:
raise ValueError(f'Could not find file for module: {module_name}')
return module_file
def _flatten_import(node: ast.ImportFrom, flatten_imports_prefix: Sequence[str]) -> bool:
"""Returns True if import should be flattened.
Checks whether the node starts the same as any of the imports in
flatten_imports_prefix.
"""
for import_prefix in flatten_imports_prefix:
if node.module is not None and node.module.startswith(import_prefix):
return True
return False
def _remove_import(node: ast.ImportFrom, remove_imports_prefix: Sequence[str]) -> bool:
"""Returns True if import should be removed.
Checks whether the node starts the same as any of the imports in
remove_imports_prefix.
"""
for import_prefix in remove_imports_prefix:
if node.module is not None and node.module.startswith(import_prefix):
return True
return False
def process_file(file_path: str, folder_path: str, flatten_imports_prefix: Sequence[str], remove_imports_prefix: Sequence[str]) -> list[str]:
with open(file_path, 'r', encoding='utf-8') as f:
source = f.read()
parent_module_name = None
if os.path.basename(file_path) == '__init__.py':
parent_module_name = os.path.basename(os.path.dirname(file_path))
tree = ast.parse(source)
new_files_to_process = []
nodes_to_remove = []
for node in ast.walk(tree):
if isinstance(node, ast.ImportFrom) and node.module is not None and _remove_import(node, remove_imports_prefix):
nodes_to_remove.append(node)
elif isinstance(node, ast.ImportFrom) and node.module is not None and _flatten_import(node, flatten_imports_prefix):
module_path = find_module_file(node.module)
node.module = convert_to_relative_import(node.module, parent_module_name)
new_files_to_process.append(module_path)
elif isinstance(node, ast.ClassDef) and node.name.startswith('Composer'):
nodes_to_remove.append(node)
elif isinstance(node, ast.Assign) and len(node.targets) == 1 and isinstance(node.targets[0], ast.Name) and (node.targets[0].id == '__all__'):
nodes_to_remove.append(node)
transformer = DeleteSpecificNodes(nodes_to_remove)
new_tree = transformer.visit(tree)
new_filename = os.path.basename(file_path)
if new_filename == '__init__.py':
new_filename = file_path.split('/')[-2] + '.py'
new_file_path = os.path.join(folder_path, new_filename)
with open(new_file_path, 'w', encoding='utf-8') as f:
assert new_tree is not None
f.write(ast.unparse(new_tree))
return new_files_to_process
def edit_files_for_hf_compatibility(folder: str, flatten_imports_prefix: Sequence[str]=('llmfoundry',), remove_imports_prefix: Sequence[str]=('composer', 'omegaconf', 'llmfoundry.metrics')) -> None:
"""Edit files to be compatible with Hugging Face Hub.
Args:
folder (str): The folder to process.
flatten_imports_prefix (Sequence[str], optional): Sequence of prefixes to flatten. Defaults to ('llmfoundry',).
remove_imports_prefix (Sequence[str], optional): Sequence of prefixes to remove. Takes precedence over flattening.
Defaults to ('composer', 'omegaconf', 'llmfoundry.metrics').
"""
files_to_process = [os.path.join(folder, filename) for filename in os.listdir(folder) if filename.endswith('.py')]
files_processed_and_queued = set(files_to_process)
while len(files_to_process) > 0:
to_process = files_to_process.pop()
if os.path.isfile(to_process) and to_process.endswith('.py'):
to_add = process_file(to_process, folder, flatten_imports_prefix, remove_imports_prefix)
for file in to_add:
if file not in files_processed_and_queued:
files_to_process.append(file)
files_processed_and_queued.add(file)