Text Generation
Transformers
PyTorch
mpt
Composer
MosaicML
llm-foundry
custom_code
text-generation-inference
mpt-7b-chat / eval_gauntlet_callback.py
irenedea's picture
LLM-foundry update March 26, 2024 23:50:31
ab2b3bb verified
raw
history blame
8.17 kB
"""Aggregate ICL evals into composite scores."""
import logging
import math
from enum import Enum
from typing import Dict, Optional
log = logging.getLogger(__name__)
class Weighting(Enum):
EQUAL = 1
SAMPLE_SZ = 2
LOG_SAMPLE_SZ = 3
def calculate_named_averages(average_names: Dict[str, list], category_scores: Dict[str, float]):
"""Calculates the named averages based off the raw category scores.
For each named average, take a simple average of all the category scores associated with that named average.
Args:
average_names (dict[str, list]): Contains a mapping of named averages to which category scores that average should consist of.
category_scores (dict[str, float]): Contains the raw scores corresponding to each category.
"""
average_scores = {}
for avg_name, category_list in average_names.items():
composite_subset = {category: score for category, score in category_scores.items() if category in category_list}
if len(composite_subset.values()) > 0:
average_scores[avg_name] = sum(composite_subset.values()) / len(composite_subset.values())
else:
average_scores[avg_name] = 0
return average_scores
class EvalGauntlet(Callback):
"""The EvalGauntlet aggregates ICL eval results.
After `eval_end`, this callback inspects the logger for different ICL metrics and aggregates the scores according to the aggregation
specification provided in the constructor.
Args:
logger_keys (list): These are the exact keys that the individual benchmark metrics will be
logged under in the logger after eval
categories (dict): This contains the list of categories, as well as the subtasks within them, the
random baseline accuracy of each subtask, and the number of fewshot examples
used for the task. See `llmfoundry/scripts/eval/yamls/eval_gauntlet_v0.2.yaml` to see the structure.
weighting (Weighting): The weighting scheme used to balance different tasks within each category.
Either assign them all equal weight, assign them weight proportional
to the dataset size, or assign them weight proportional to the log2 of the dataset size.
Options are 'EQUAL', 'SAMPLE_SZ', and 'LOG_SAMPLE_SZ'.
subtract_random_baseline (bool): Flag determining whether to subtract random baseline accuracy
from the performance on each individual benchmark before aggregating.
rescale_accuracy (bool): Flag determining whether to rescale the accuracy on each benchmark
by (1-random_baseline_accuracy) before aggregating. Using this ensures that all benchmarks max out at 1.0.
benchmark_sizes (Optional[dict]): Optional data on benchmark sizes, used when not relying on equal weighting.
averages (Optional[dict]): Optional dictionary specifying a mapping from a average names to lists of categories used produce each named average.
"""
def __init__(self, logger_keys: list, categories: dict, weighting: str='EQUAL', subtract_random_baseline: bool=True, rescale_accuracy: bool=True, benchmark_sizes: Optional[dict]=None, averages: Optional[dict]=None):
if isinstance(logger_keys, dict):
raise ValueError('logger_keys now requires a list type as input, not a dict')
if weighting != Weighting.EQUAL and benchmark_sizes is None:
raise Exception('When not using equal weighting, you must provide the benchmark sizes.')
if rescale_accuracy and (not subtract_random_baseline):
raise Exception('Only use accuracy rescaling in conjunction with subtracting random baseline accuracy.')
self.categories = categories
self.category_names = [conf.get('name') for conf in self.categories]
self.weighting = Weighting[weighting]
self.subtract_random_baseline = subtract_random_baseline
self.rescale_accuracy = rescale_accuracy
self.logger_keys = logger_keys
for category in self.categories:
for benchmark in category['benchmarks']:
bench_name = f"{benchmark['name']}/{benchmark['num_fewshot']}-shot"
if self.weighting != Weighting.EQUAL:
assert benchmark_sizes is not None
cumulative_samples = max(sum((count for name, count in benchmark_sizes.items() if name.startswith(bench_name))), 1)
else:
cumulative_samples = -1
weight = None
if self.weighting == Weighting.EQUAL:
weight = 1
elif self.weighting == Weighting.SAMPLE_SZ:
weight = cumulative_samples
elif self.weighting == Weighting.LOG_SAMPLE_SZ:
weight = max(math.log2(cumulative_samples), 1)
assert weight is not None
benchmark['weighting'] = weight
self.averages = {}
if averages is not None:
self.averages = averages
else:
self.averages['default_average'] = self.category_names
for avg_name in self.averages:
if avg_name in self.category_names:
raise ValueError(f'Found average name `{avg_name}` used as category name. Average names and category names must be non-overlapping.')
def extract_metrics_from_state(self, state: State) -> Dict[str, float]:
results = {}
for key in self.logger_keys:
dl_name, metric_name = (key.split('/')[1:-1], key.split('/')[-1])
if 'Accuracy' not in metric_name:
continue
metric = state.eval_metrics.get('/'.join(dl_name), {}).get(metric_name, None)
if metric is None:
continue
val = metric.compute().item()
key = '/'.join(dl_name[0:2])
if key not in results:
results[key] = []
results[key].append(val)
return {k: sum(v) / len(v) for k, v in results.items()}
def eval_after_all(self, state: State, logger: Logger) -> Dict[str, float]:
computed_metrics = self.extract_metrics_from_state(state)
if len(computed_metrics) == 0:
return {}
category_scores = {}
for category in self.categories:
missing_metrics = []
category_scores[category['name']] = []
for benchmark in category['benchmarks']:
key = f"{benchmark['name']}/{benchmark['num_fewshot']}-shot"
if key not in computed_metrics:
log.warning(f'Could not find results for benchmark: {benchmark}.')
missing_metrics.append(key)
else:
score = computed_metrics[key]
if self.subtract_random_baseline:
score -= benchmark['random_baseline']
if self.rescale_accuracy and self.subtract_random_baseline:
score /= 1.0 - benchmark['random_baseline']
category_scores[category['name']].append({'name': benchmark['name'], 'score': score, 'weighting': benchmark['weighting']})
if len(missing_metrics) > 0:
log.warning(f"Removing category `{category['name']}` from scores because benchmarks were missing: {missing_metrics}")
del category_scores[category['name']]
continue
total_weight = sum((k['weighting'] for k in category_scores[category['name']]))
category_scores[category['name']] = sum((k['score'] * (k['weighting'] / total_weight) for k in category_scores[category['name']]))
named_averages = calculate_named_averages(self.averages, category_scores)
category_scores.update(named_averages)
category_scores = {f'icl/metrics/eval_gauntlet/{k}': v for k, v in category_scores.items()}
if logger is not None:
logger.log_metrics(category_scores)
return category_scores