import contextlib import os import tempfile from pathlib import Path import torch class MonolithicCheckpointSaver(Callback): """Save a monolithic checkpoint every N batches. Args: save_folder (str): Folder to save checkpoints to (can be a URI) batch_interval (int): Number of batches between checkpoints. filename (str): Filename to save checkpoints to. overwrite (bool): Whether to overwrite previous checkpoints. keep_optimizers (bool): Whether to save the optimizer state in the monolithic checkpoint. """ def __init__(self, save_folder: str, batch_interval: int, filename: str='ep{epoch}-ba{batch}.pt', overwrite: bool=False, keep_optimizers: bool=False): self.backend, self.bucket_name, self.save_dir_format_str = parse_uri(save_folder) self.filename_format_str = filename self.batch_interval = batch_interval self.upload_to_object_store = self.backend != '' self.overwrite = overwrite self.keep_optimizers = keep_optimizers if self.upload_to_object_store: self.remote_ud = RemoteUploaderDownloader(bucket_uri=f'{self.backend}://{self.bucket_name}') else: self.remote_ud = None def init(self, state: State, logger: Logger) -> None: if self.upload_to_object_store and self.remote_ud is not None: self.remote_ud.init(state, logger) state.callbacks.append(self.remote_ud) def batch_checkpoint(self, state: State, logger: Logger) -> None: if state.timestamp.batch.value % self.batch_interval == 0: self._save_checkpoint(state, logger) def fit_end(self, state: State, logger: Logger) -> None: if state.timestamp.batch.value % self.batch_interval != 0: self._save_checkpoint(state, logger) def _save_checkpoint(self, state: State, logger: Logger) -> None: del logger filename = format_name_with_dist_and_time(self.filename_format_str, state.run_name, state.timestamp) save_dir = format_name_with_dist_and_time(self.save_dir_format_str, state.run_name, state.timestamp) dir_context_mgr = tempfile.TemporaryDirectory() if self.upload_to_object_store else contextlib.nullcontext(enter_result=save_dir) with dir_context_mgr as temp_save_dir: assert isinstance(temp_save_dir, str) save_path = str(Path(temp_save_dir) / Path(filename)) dirname = os.path.dirname(save_path) if dirname: os.makedirs(dirname, exist_ok=True) state_dict = {'state': state.state_dict(), 'rng': reproducibility.get_rng_state()} state_dict['state'].pop('optimizers') state_dict['state'].pop('model') with fsdp_state_dict_type_context(state.model, state_dict_type='full'): state_dict['state']['model'] = state.model.state_dict() if self.keep_optimizers: optimizer = state.optimizers[0] state_dict['state']['optimizers'] = {type(optimizer).__qualname__: fsdp_get_optim_state_dict(state.model, optimizer, state_dict_type='full')} if dist.get_global_rank() == 0: torch.save(state_dict, save_path) if self.upload_to_object_store and self.remote_ud is not None and (dist.get_global_rank() == 0): remote_file_name = str(Path(save_dir) / Path(filename)) self.remote_ud.upload_file(state=state, remote_file_name=remote_file_name, file_path=Path(save_path), overwrite=self.overwrite)