"""Run the eval loop asynchronously as part of a MosaicML platform run. This callback is currently experimental. The API may change in the future. """ import logging import os import warnings from collections import Counter from pathlib import Path from typing import Any, Dict, List, Optional, Tuple, Union from .interfaces import CallbackWithConfig from mcli import Run, RunConfig, create_run, get_run log = logging.getLogger(__name__) REQUIRED_PARAMS_FOR_EVAL = {'device_eval_batch_size', 'icl_tasks', 'max_seq_len', 'model', 'tokenizer'} OPTIONAL_PARAMS_FOR_EVAL = {'dist_timeout', 'eval_gauntlet', 'eval_loader', 'fsdp_config', 'eval_subset_num_batches', 'icl_subset_num_batches', 'loggers', 'precision', 'python_log_level', 'seed'} RUN_NAME_PREFIX = 'eval' MAX_RUN_NAME_BASE_LENGTH = 55 def get_run_name(training_run_name: str, current_interval: str) -> str: """Get the new eval run name. Args: training_run_name: The name of the current training run current_interval: The current interval string of the training run Returns: The new run name """ name_without_uuid_suffix = training_run_name.rsplit('-', 1)[0] max_length = MAX_RUN_NAME_BASE_LENGTH - len(RUN_NAME_PREFIX) - len(current_interval) - 2 if len(name_without_uuid_suffix) > max_length: new_name = name_without_uuid_suffix[:max_length] log.warning(f'Training run name {name_without_uuid_suffix} may be too long,' + f' truncating to {new_name}') name_without_uuid_suffix = new_name return f'{RUN_NAME_PREFIX}-{current_interval}-{name_without_uuid_suffix}' def get_eval_parameters(parameters: Dict[str, Any], checkpoint: str, training_run_name: str) -> Dict[str, Any]: """Get the parameters needed for the eval run. Args: parameters: The parameters from the training run checkpoint: The path to the latest checkpoint training_run_name: The name of the training run Returns: The parameters needed for the eval run as a dict """ looking_for = REQUIRED_PARAMS_FOR_EVAL.copy() subset_keys = {} for key in parameters: if key in OPTIONAL_PARAMS_FOR_EVAL: subset_keys[key] = parameters[key] elif key in REQUIRED_PARAMS_FOR_EVAL: subset_keys[key] = parameters[key] looking_for.remove(key) if looking_for: raise Exception(f'Missing the following required parameters for async eval: {looking_for}') for logger, config in subset_keys.get('loggers', {}).items(): if logger == 'wandb': config['group'] = config.pop('name', training_run_name) model = subset_keys.pop('model') model_name = model.get('name', None) if not model_name: raise Exception(f'Async evaluation requires "name" keys for models') new_models = {'model_name': model_name, 'model': model, 'load_path': checkpoint} tokenizer = subset_keys.pop('tokenizer', None) if tokenizer is not None: new_models['tokenizer'] = tokenizer subset_keys['models'] = [new_models] return subset_keys def validate_interval(interval: Union[str, int, Time], save_interval: Union[str, int, Time]) -> Time: new_save_interval = Time.from_input(save_interval, TimeUnit.EPOCH) async_interval = Time.from_input(interval, TimeUnit.EPOCH) if new_save_interval.unit != async_interval.unit: raise ValueError('Save interval and async eval interval must be in the same unit') if async_interval < new_save_interval: raise ValueError('Async eval interval must be equal or greater (less frequent) than save interval') if async_interval.value % new_save_interval.value != 0: raise ValueError('Async eval interval must be a multiple of save interval') return async_interval def validate_eval_run_config(eval_run_config: Optional[Dict[str, Any]]) -> Dict[str, Any]: if not eval_run_config: return {} run_config = eval_run_config.copy() supported_keys = {'image', 'command', 'compute', 'scheduling'} found_unsupported = set() for key in run_config: if key not in supported_keys: found_unsupported.add(key) if found_unsupported: raise ValueError(f"Unsupported eval run config keys found: {', '.join(found_unsupported)}" + f'. Supported keys: {supported_keys}') return run_config CHECKS_PER_INTERVAL = 4 class AsyncEval(CallbackWithConfig): """Run the eval loop asynchronously as part of a MosaicML platform run. This callback is currently experimental. The API may change in the future. Args: training_params: Dict[str, Any]: The parameter config from the training run interval: Union[str, int, Time]: The interval describing how often eval runs should be launched. If an integer, it will be assumed to be in :attr:`.TimeUnit.EPOCH`. Otherwise, the unit must be either :attr:`.TimeUnit.EPOCH`, :attr:`.TimeUnit.BATCH`, :attr:`.TimeUnit.TOKEN`, or :attr:`.TimeUnit.SAMPLE`. eval_run_config: Optional[Dict[str, Any]]: A subset of mcli run config values to use for the eval run. If not specified, any fields from run config will be created dynamically from the training run config and the interval. The following fields are supported: - ``image``: Image of the eval run. Default: same as training run - ``command``: Command to run for the eval run. Default: calls `composer scripts/eval/eval.py $PARAMETERS`. If custom setup is needed, the command should include calling the eval script with $PARAMETERS - ``compute``: Compute to use for the eval run. Default: same cluster as the training run and a single node (8 GPUs) - ``scheduling``: Scheduling to use for the eval run. Default: same as training run All fields are optional, but if specified, must be valid for a mcli run config. We provide this optional config to give you the most flexibility in customizing the eval run, but it is recommended to use the default values unless you have a specific use case """ def __init__(self, training_params: Dict[str, Any], interval: Union[str, int, Time], eval_run_config: Optional[Dict[str, Any]]=None): for required in ('save_interval', 'save_folder'): if required not in training_params: raise ValueError(f'{required} required for async eval') if '/' in training_params.get('save_filename', ''): raise ValueError('AsyncEval not supported for save_filename that includes a path') self.checkpoint_save_folder = training_params['save_folder'] self.training_params = training_params self.eval_run_config = validate_eval_run_config(eval_run_config) self.current_run = self._get_current_run() get_eval_parameters(parameters=training_params, checkpoint='test', training_run_name=self.current_run.name) self.interval = validate_interval(interval, self.training_params['save_interval']) check_interval_value = max(self.interval.value // CHECKS_PER_INTERVAL, 1) self.check_interval = Time(check_interval_value, self.interval.unit) self.checkpoints_evaled: Dict[Time, Tuple[str, str]] = {} self.is_at_check_interval = create_interval_scheduler(self.check_interval, include_end_of_training=False) log.info('Initialized AsyncEval callback. Will generate runs at ' + f'interval {interval}, checking at {self.check_interval}') def state_dict(self) -> Dict[str, Any]: checkpoints_evaled = [] for eval_ts, (checkpoint, run_name) in self.checkpoints_evaled.items(): eval_ts_dict = {'value': eval_ts.value, 'unit': eval_ts.unit.value} checkpoints_evaled.append((eval_ts_dict, checkpoint, run_name)) return {'checkpoints_evaled': checkpoints_evaled} def load_state_dict(self, state_dict: Dict[str, Any]): previous_checkpoints_evaled = state_dict.get('checkpoints_evaled', []) if previous_checkpoints_evaled: for eval_ts, checkpoint, run_name in previous_checkpoints_evaled: eval_ts = Time(eval_ts['value'], TimeUnit(eval_ts['unit'])) self.checkpoints_evaled[eval_ts] = (checkpoint, run_name) log.info(f'Loaded previous checkpoints evaled: {self.checkpoints_evaled}') @staticmethod def _get_ready_sharded_checkpoints(checkpointer_checkpoints: Dict[str, Timestamp], remote_files: List[str]) -> Dict[str, Timestamp]: """Identify checkpoints ready to be evaled based on remote files. This has special logic for sharded checkpoints to consider checkpoints composed of multiple shards (one per gpu) and metadata Args: checkpointer_checkpoints: All checkpoints from the checkpointer state remote_files: List of remote files in the save folder Returns: Dict of checkpoints that are complete and ready to be evaled """ remote_file_group_counts = Counter() for f in remote_files: checkpoint_ts_path = Path(f).parts[-2] remote_file_group_counts[checkpoint_ts_path] += 1 checkpoints_to_eval = {} for checkpoint, checkpoint_ts in checkpointer_checkpoints.items(): checkpoint_ts_path = Path(checkpoint).parts[-2] expected_shard_count = dist.get_world_size() + 1 if remote_file_group_counts[checkpoint_ts_path] != expected_shard_count: log.debug(f'Checkpoint {checkpoint} not fully uploaded (missing shards ' + f'{remote_file_group_counts[checkpoint_ts_path]}/{expected_shard_count}), skipping') continue checkpoints_to_eval[checkpoint_ts_path] = checkpoint_ts return checkpoints_to_eval @staticmethod def _get_ready_single_checkpoints(checkpointer_checkpoints: Dict[str, Timestamp], remote_checkpoints: List[str]) -> Dict[str, Timestamp]: """Identify checkpoints ready to be evaled based on remote checkpoints. This is much simpler than the sharded case, because there is only one file Args: checkpointer_checkpoints: All checkpoints from the checkpointer state remote_checkpoints: List of remote checkpoints in the save folder Returns: Dict of checkpoints that are complete and ready to be evaled """ unique_remote_checkpoints = set(remote_checkpoints) checkpoints_to_eval = {} for checkpoint, checkpoint_ts in checkpointer_checkpoints.items(): checkpoint_ts_path = Path(checkpoint).parts[-1] if checkpoint not in unique_remote_checkpoints: log.debug(f'Checkpoint {checkpoint} not fully uploaded, skipping') continue checkpoints_to_eval[checkpoint_ts_path] = checkpoint_ts return checkpoints_to_eval def _get_checkpoints_and_launch_runs(self, state: State): """Get the latest checkpoint from the training run. Args: state: The current state of the training run Returns: Returns checkpoints that have not been evaled """ checkpointer = None for callback in state.callbacks: if isinstance(callback, CheckpointSaver): if checkpointer is None: checkpointer = callback else: log.warning('Multiple checkpoint savers found. Using the first one') if not checkpointer: warnings.warn('No checkpoint saver callback found. Skipping eval') return if not checkpointer.all_saved_checkpoints_to_timestamp: log.debug('No saved checkpoints found on the checkpointer. Skipping eval') return log.debug(f'Found {len(checkpointer.all_saved_checkpoints_to_timestamp)} ' + f'checkpoints: {checkpointer.all_saved_checkpoints_to_timestamp}') remote_checkpoints = list_remote_objects(self.checkpoint_save_folder) if not remote_checkpoints: log.debug('No saved checkpoints found yet on remote. Skipping eval') return if state.fsdp_sharded_state_dict_enabled: checkpoints_to_eval = self._get_ready_sharded_checkpoints(checkpointer.all_saved_checkpoints_to_timestamp, remote_checkpoints) else: checkpoints_to_eval = self._get_ready_single_checkpoints(checkpointer.all_saved_checkpoints_to_timestamp, remote_checkpoints) for checkpoint_interval_path, checkpoint_timestamp in checkpoints_to_eval.items(): checkpoint_ts = checkpoint_timestamp.get(self.interval.unit) if checkpoint_ts.value % self.interval.value != 0: log.debug(f'Checkpoint {checkpoint_interval_path} ({checkpoint_ts}) is ' + f'not at an eval interval ({self.interval}), skipping') continue if checkpoint_ts in self.checkpoints_evaled: continue full_checkpoint_path = f'{self.checkpoint_save_folder}/{checkpoint_interval_path}' eval_run = self.launch_run(full_checkpoint_path, checkpoint_ts) self.checkpoints_evaled[checkpoint_ts] = (full_checkpoint_path, eval_run.name) def run_event(self, event: Event, state: State, logger: Logger) -> None: del logger should_launch_run = all([state.get_elapsed_duration() is not None, self.is_at_check_interval(state, event), dist.get_global_rank() == 0]) if should_launch_run: self._get_checkpoints_and_launch_runs(state) def close(self, state: State, logger: Logger) -> None: del logger if dist.get_global_rank() != 0: return self._get_checkpoints_and_launch_runs(state) latest_timestamp = state.timestamp.get(self.interval.unit) if latest_timestamp not in self.checkpoints_evaled: save_latest_filename = self.training_params.get('save_latest_filename', None) if not save_latest_filename: rank = dist.get_global_rank() save_latest_filename = f'latest-rank{rank}.pt' checkpoint = f'{self.checkpoint_save_folder}/{save_latest_filename}' eval_run = self.launch_run(checkpoint, latest_timestamp) self.checkpoints_evaled[latest_timestamp] = (checkpoint, eval_run.name) log.info(f'AsyncEval callback finished. Launched {len(self.checkpoints_evaled)} eval runs:') for checkpoint_ts, (checkpoint, run_name) in self.checkpoints_evaled.items(): log.info(f' {checkpoint_ts}: {checkpoint}, {run_name}') def _get_current_run(self) -> Run: if os.environ.get(MOSAICML_PLATFORM_ENV_VAR, 'false').lower() == 'false': raise RuntimeError('AsyncEval callback is only supported when running on the MosaicML platform') run_name = os.environ.get(RUN_NAME_ENV_VAR, None) if not run_name: raise RuntimeError('RUN_NAME environment variable must be set to use the AsyncEval callback') return get_run(run_name, include_details=True) def launch_run(self, checkpoint: str, current_interval: Time) -> Run: """Launch a new eval run. Args: checkpoint: The checkpoint to eval current_interval: The interval of the checkpoint Returns: The launched run (mcli.Run type) """ log.info(f'Launching eval run for {checkpoint} at {current_interval}') cfg = self.current_run.submitted_config default_compute = {'gpus': 8, 'cluster': self.current_run.cluster} run_name = get_run_name(self.current_run.name, str(current_interval)) params = get_eval_parameters(parameters=self.training_params, checkpoint=checkpoint, training_run_name=self.current_run.name) params['run_name'] = run_name integrations = cfg.integrations found_llm_foundry, installation_path = (False, 'llm-foundry') for i in integrations: if i['integration_type'] != 'git_repo': continue if not i['git_repo'].endswith('llm-foundry'): continue found_llm_foundry = True if i.get('path'): installation_path = i['path'] if not found_llm_foundry: from .llmfoundry import __version__ as latest_foundry_version version = f'v{latest_foundry_version}' log.warning('No github integration found for llm-foundry. Adding installation ' + f'to eval run for latest foundry release ({version}). ' + 'To use a fork, custom branch, or custom version, configure ' + 'llm-foundry installation through a github integration') integrations.append({'integration_type': 'git_repo', 'git_repo': 'mosaicml/llm-foundry', 'git_branch': version, 'pip_install': '-e .[gpu]', 'ssh_clone': False}) metadata = cfg.metadata metadata['eval_timestamp'] = current_interval.value metadata['eval_timestamp_unit'] = current_interval.unit.value default_command = f'cd {installation_path}/scripts \n composer eval/eval.py $PARAMETERS' run_config = RunConfig(name=run_name, image=self.eval_run_config.get('image', self.current_run.image), command=self.eval_run_config.get('command', default_command), compute=self.eval_run_config.get('compute', default_compute), scheduling=self.eval_run_config.get('scheduling', self.current_run.submitted_config.scheduling), integrations=integrations, env_variables=cfg.env_variables, metadata=cfg.metadata, parameters=params) log.info(f'Creating new run with config: \n{run_config}') new_run = create_run(run_config) log.info(f'Launched new run {new_run.name} inside eval loop') return new_run