updt triton_flash_attn_fn import (#29)
Browse files- updt triton_flash_attn_fn import (b0d9e186ee07800d611196c35a9d21848ac8c459)
Co-authored-by: Vitaliy Chiley <[email protected]>
- attention.py +11 -3
attention.py
CHANGED
@@ -87,9 +87,17 @@ def flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None
|
|
87 |
|
88 |
def triton_flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
89 |
try:
|
90 |
-
from
|
91 |
except:
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
check_valid_inputs(query, key, value)
|
94 |
if dropout_p:
|
95 |
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
@@ -108,7 +116,7 @@ def triton_flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bi
|
|
108 |
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
|
109 |
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
|
110 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
111 |
-
attn_output =
|
112 |
output = attn_output.view(*attn_output.shape[:2], -1)
|
113 |
return (output, None)
|
114 |
|
|
|
87 |
|
88 |
def triton_flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
89 |
try:
|
90 |
+
from .flash_attn_triton import flash_attn_func
|
91 |
except:
|
92 |
+
_installed = False
|
93 |
+
if version.parse(torch.__version__) < version.parse('2.0.0'):
|
94 |
+
_installed = True
|
95 |
+
try:
|
96 |
+
from flash_attn.flash_attn_triton import flash_attn_func
|
97 |
+
except:
|
98 |
+
_installed = False
|
99 |
+
if not _installed:
|
100 |
+
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.')
|
101 |
check_valid_inputs(query, key, value)
|
102 |
if dropout_p:
|
103 |
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
|
|
116 |
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
|
117 |
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
|
118 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
119 |
+
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
120 |
output = attn_output.view(*attn_output.shape[:2], -1)
|
121 |
return (output, None)
|
122 |
|