Text Generation
Transformers
PyTorch
mpt
Composer
MosaicML
llm-foundry
custom_code
text-generation-inference
File size: 4,042 Bytes
ba84330
14870ca
ba84330
 
 
14870ca
ba84330
7ab7042
 
 
 
 
ba84330
 
 
7ab7042
14870ca
7ab7042
14870ca
 
ba84330
 
 
14870ca
ba84330
7ab7042
14870ca
ba84330
14870ca
 
 
 
 
ba84330
 
7ab7042
ba84330
7ab7042
ba84330
7ab7042
ba84330
14870ca
 
 
7ab7042
 
 
 
 
ba84330
7ab7042
 
 
ba84330
8667424
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""GPT Blocks used for the GPT Model."""
from typing import Any, Dict, Optional, Tuple
import torch
import torch.nn as nn
from .attention import ATTN_CLASS_REGISTRY
from .ffn import FFN_CLASS_REGISTRY, build_ffn
from .norm import NORM_CLASS_REGISTRY
try:
    from flash_attn.bert_padding import unpad_input, pad_input
except:
    (unpad_input, pad_input) = (None, None)
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'qk_gn': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'sliding_window_size': -1, 'alibi': False, 'alibi_bias_max': 8, 'rope': False, 'rope_theta': 10000, 'rope_impl': 'dail', 'rope_dail_config': {'type': 'original', 'pos_idx_in_fp32': True, 'xpos_scale_base': 512}, 'rope_hf_config': {'type': 'no_scaling', 'factor': 1.0}}

class MPTBlock(nn.Module):

    def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
        if attn_config is None:
            attn_config = attn_config_defaults
        if ffn_config is None:
            ffn_config = {'ffn_type': 'mptmlp'}
        del kwargs
        super().__init__()
        norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
        assert isinstance(attn_config['attn_type'], str)
        attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
        args_to_exclude_in_attn_class = {'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max', 'rope', 'rope_theta', 'rope_impl', 'rope_dail_config', 'rope_hf_config'}
        attn_config_subset_for_attn_class = {k: v for (k, v) in attn_config.items() if k not in args_to_exclude_in_attn_class}
        self.norm_1 = norm_class(d_model, device=device)
        self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
        self.norm_2 = None
        if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', False):
            self.norm_2 = norm_class(d_model, device=device)
        self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
        self.resid_attn_dropout = nn.Dropout(resid_pdrop)
        self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
        self.use_pad_tok_in_ffn = use_pad_tok_in_ffn

    def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[Dict]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
        a = self.norm_1(x)
        (b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions, alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
        x = x + self.resid_attn_dropout(b)
        m = x
        if self.norm_2 is not None:
            m = self.norm_2(x)
        (batch_size, seq_len) = m.size()[:2]
        indices = None
        if not self.use_pad_tok_in_ffn:
            assert unpad_input is not None
            (m, indices, _, _) = unpad_input(m, attention_mask)
        n = self.ffn(m)
        if not self.use_pad_tok_in_ffn:
            assert pad_input is not None
            n = pad_input(n, indices, batch_size, seq_len)
        x = x + self.resid_ffn_dropout(n)
        return (x, attn_weights, past_key_value)