mp-02's picture
update model card README.md
088a745
|
raw
history blame
2.76 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - mp-02/funsd
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-funsd
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mp-02/funsd
          type: mp-02/funsd
        metrics:
          - name: Precision
            type: precision
            value: 0.9059871350816427
          - name: Recall
            type: recall
            value: 0.9155
          - name: F1
            type: f1
            value: 0.9107187266849044
          - name: Accuracy
            type: accuracy
            value: 0.8407211759301791

layoutlmv3-finetuned-funsd

This model is a fine-tuned version of layoutlmv3 on the mp-02/funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8860
  • Precision: 0.9060
  • Recall: 0.9155
  • F1: 0.9107
  • Accuracy: 0.8407

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.63 100 0.6111 0.7963 0.864 0.8288 0.7987
No log 5.26 200 0.5861 0.8507 0.883 0.8665 0.8266
No log 7.89 300 0.5856 0.8654 0.9005 0.8826 0.8426
No log 10.53 400 0.6502 0.8801 0.8995 0.8897 0.8427
0.4088 13.16 500 0.7679 0.8880 0.904 0.8959 0.8373
0.4088 15.79 600 0.8371 0.8820 0.904 0.8928 0.8333
0.4088 18.42 700 0.8320 0.8931 0.9145 0.9037 0.8336
0.4088 21.05 800 0.8494 0.8969 0.9135 0.9051 0.8341
0.4088 23.68 900 0.8700 0.9005 0.914 0.9072 0.8385
0.061 26.32 1000 0.8860 0.9060 0.9155 0.9107 0.8407

Framework versions

  • Transformers 4.12.5
  • Pytorch 1.10.0+cu111
  • Datasets 2.13.2
  • Tokenizers 0.10.1