update model card README.md
Browse files
README.md
CHANGED
@@ -20,16 +20,16 @@ model-index:
|
|
20 |
metrics:
|
21 |
- name: Precision
|
22 |
type: precision
|
23 |
-
value: 0.
|
24 |
- name: Recall
|
25 |
type: recall
|
26 |
-
value: 0.
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
-
value: 0.
|
30 |
- name: Accuracy
|
31 |
type: accuracy
|
32 |
-
value: 0.
|
33 |
---
|
34 |
|
35 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -39,11 +39,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
39 |
|
40 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
|
41 |
It achieves the following results on the evaluation set:
|
42 |
-
- Loss: 0.
|
43 |
-
- Precision: 0.
|
44 |
-
- Recall: 0.
|
45 |
-
- F1: 0.
|
46 |
-
- Accuracy: 0.
|
47 |
|
48 |
## Model description
|
49 |
|
@@ -63,33 +63,27 @@ More information needed
|
|
63 |
|
64 |
The following hyperparameters were used during training:
|
65 |
- learning_rate: 1e-05
|
66 |
-
- train_batch_size:
|
67 |
- eval_batch_size: 16
|
68 |
- seed: 42
|
69 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
70 |
- lr_scheduler_type: linear
|
71 |
-
- training_steps:
|
72 |
|
73 |
### Training results
|
74 |
|
75 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
76 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
77 |
-
| No log |
|
78 |
-
| No log |
|
79 |
-
| No log |
|
80 |
-
| No log |
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
| No log | 11.0 | 275 | 0.6476 | 0.8388 | 0.8895 | 0.8634 | 0.8299 |
|
88 |
-
| No log | 12.0 | 300 | 0.6359 | 0.8584 | 0.8945 | 0.8761 | 0.8382 |
|
89 |
-
| No log | 13.0 | 325 | 0.6469 | 0.8759 | 0.907 | 0.8912 | 0.8395 |
|
90 |
-
| No log | 14.0 | 350 | 0.6510 | 0.8729 | 0.9035 | 0.8880 | 0.8373 |
|
91 |
-
| No log | 15.0 | 375 | 0.6555 | 0.8656 | 0.902 | 0.8834 | 0.8354 |
|
92 |
-
| No log | 16.0 | 400 | 0.6541 | 0.8747 | 0.904 | 0.8891 | 0.8368 |
|
93 |
|
94 |
|
95 |
### Framework versions
|
|
|
20 |
metrics:
|
21 |
- name: Precision
|
22 |
type: precision
|
23 |
+
value: 0.9059871350816427
|
24 |
- name: Recall
|
25 |
type: recall
|
26 |
+
value: 0.9155
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
+
value: 0.9107187266849044
|
30 |
- name: Accuracy
|
31 |
type: accuracy
|
32 |
+
value: 0.8407211759301791
|
33 |
---
|
34 |
|
35 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
39 |
|
40 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
|
41 |
It achieves the following results on the evaluation set:
|
42 |
+
- Loss: 0.8860
|
43 |
+
- Precision: 0.9060
|
44 |
+
- Recall: 0.9155
|
45 |
+
- F1: 0.9107
|
46 |
+
- Accuracy: 0.8407
|
47 |
|
48 |
## Model description
|
49 |
|
|
|
63 |
|
64 |
The following hyperparameters were used during training:
|
65 |
- learning_rate: 1e-05
|
66 |
+
- train_batch_size: 4
|
67 |
- eval_batch_size: 16
|
68 |
- seed: 42
|
69 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
70 |
- lr_scheduler_type: linear
|
71 |
+
- training_steps: 1000
|
72 |
|
73 |
### Training results
|
74 |
|
75 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
76 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
77 |
+
| No log | 2.63 | 100 | 0.6111 | 0.7963 | 0.864 | 0.8288 | 0.7987 |
|
78 |
+
| No log | 5.26 | 200 | 0.5861 | 0.8507 | 0.883 | 0.8665 | 0.8266 |
|
79 |
+
| No log | 7.89 | 300 | 0.5856 | 0.8654 | 0.9005 | 0.8826 | 0.8426 |
|
80 |
+
| No log | 10.53 | 400 | 0.6502 | 0.8801 | 0.8995 | 0.8897 | 0.8427 |
|
81 |
+
| 0.4088 | 13.16 | 500 | 0.7679 | 0.8880 | 0.904 | 0.8959 | 0.8373 |
|
82 |
+
| 0.4088 | 15.79 | 600 | 0.8371 | 0.8820 | 0.904 | 0.8928 | 0.8333 |
|
83 |
+
| 0.4088 | 18.42 | 700 | 0.8320 | 0.8931 | 0.9145 | 0.9037 | 0.8336 |
|
84 |
+
| 0.4088 | 21.05 | 800 | 0.8494 | 0.8969 | 0.9135 | 0.9051 | 0.8341 |
|
85 |
+
| 0.4088 | 23.68 | 900 | 0.8700 | 0.9005 | 0.914 | 0.9072 | 0.8385 |
|
86 |
+
| 0.061 | 26.32 | 1000 | 0.8860 | 0.9060 | 0.9155 | 0.9107 | 0.8407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
### Framework versions
|