update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
-
base_model: microsoft/layoutlmv3-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
@@ -18,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# layoutlmv3-finetuned-funsd2
|
20 |
|
21 |
-
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -44,34 +43,32 @@ More information needed
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 5e-05
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
-
- training_steps:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
-
| Training Loss | Epoch
|
57 |
-
|
58 |
-
| No log |
|
59 |
-
| No log |
|
60 |
-
| No log |
|
61 |
-
| No log |
|
62 |
-
| No log |
|
63 |
-
| No log |
|
64 |
-
| No log |
|
65 |
-
| No log |
|
66 |
-
| No log |
|
67 |
-
|
|
68 |
-
| No log | 10.0 | 110 | 0.6325 | 0.9086 | 0.9221 | 0.9153 | 0.8502 |
|
69 |
-
| No log | 10.9091 | 120 | 0.6633 | 0.9027 | 0.9090 | 0.9058 | 0.8500 |
|
70 |
|
71 |
|
72 |
### Framework versions
|
73 |
|
74 |
-
- Transformers 4.
|
75 |
-
- Pytorch
|
76 |
-
- Datasets 2.
|
77 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
|
|
17 |
|
18 |
# layoutlmv3-finetuned-funsd2
|
19 |
|
20 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.8330
|
23 |
+
- Precision: 0.9046
|
24 |
+
- Recall: 0.9105
|
25 |
+
- F1: 0.9076
|
26 |
+
- Accuracy: 0.8536
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 4
|
47 |
+
- eval_batch_size: 16
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- training_steps: 500
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.32 | 50 | 0.6163 | 0.8088 | 0.8965 | 0.8504 | 0.8088 |
|
58 |
+
| No log | 2.63 | 100 | 0.5416 | 0.8037 | 0.868 | 0.8346 | 0.8134 |
|
59 |
+
| No log | 3.95 | 150 | 0.5572 | 0.8446 | 0.8885 | 0.8660 | 0.8385 |
|
60 |
+
| No log | 5.26 | 200 | 0.7317 | 0.8458 | 0.8555 | 0.8506 | 0.8124 |
|
61 |
+
| No log | 6.58 | 250 | 0.7220 | 0.8877 | 0.8935 | 0.8906 | 0.8385 |
|
62 |
+
| No log | 7.89 | 300 | 0.8070 | 0.8778 | 0.9055 | 0.8915 | 0.8436 |
|
63 |
+
| No log | 9.21 | 350 | 0.7895 | 0.8969 | 0.913 | 0.9049 | 0.8477 |
|
64 |
+
| No log | 10.53 | 400 | 0.8168 | 0.8935 | 0.889 | 0.8912 | 0.8412 |
|
65 |
+
| No log | 11.84 | 450 | 0.8233 | 0.8955 | 0.917 | 0.9061 | 0.8521 |
|
66 |
+
| 0.2564 | 13.16 | 500 | 0.8330 | 0.9046 | 0.9105 | 0.9076 | 0.8536 |
|
|
|
|
|
67 |
|
68 |
|
69 |
### Framework versions
|
70 |
|
71 |
+
- Transformers 4.12.5
|
72 |
+
- Pytorch 1.10.0+cu111
|
73 |
+
- Datasets 2.13.2
|
74 |
+
- Tokenizers 0.10.1
|