update model card README.md
Browse files
README.md
CHANGED
@@ -20,16 +20,16 @@ model-index:
|
|
20 |
metrics:
|
21 |
- name: Precision
|
22 |
type: precision
|
23 |
-
value: 0.
|
24 |
- name: Recall
|
25 |
type: recall
|
26 |
-
value: 0.
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
-
value: 0.
|
30 |
- name: Accuracy
|
31 |
type: accuracy
|
32 |
-
value: 0.
|
33 |
---
|
34 |
|
35 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -39,11 +39,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
39 |
|
40 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
|
41 |
It achieves the following results on the evaluation set:
|
42 |
-
- Loss: 0.
|
43 |
-
- Precision: 0.
|
44 |
-
- Recall: 0.
|
45 |
-
- F1: 0.
|
46 |
-
- Accuracy: 0.
|
47 |
|
48 |
## Model description
|
49 |
|
@@ -63,7 +63,7 @@ More information needed
|
|
63 |
|
64 |
The following hyperparameters were used during training:
|
65 |
- learning_rate: 1e-05
|
66 |
-
- train_batch_size:
|
67 |
- eval_batch_size: 16
|
68 |
- seed: 42
|
69 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
@@ -74,22 +74,22 @@ The following hyperparameters were used during training:
|
|
74 |
|
75 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
76 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
77 |
-
| No log | 0
|
78 |
-
| No log |
|
79 |
-
| No log |
|
80 |
-
| No log |
|
81 |
-
| No log |
|
82 |
-
| No log |
|
83 |
-
| No log |
|
84 |
-
| No log |
|
85 |
-
| No log |
|
86 |
-
| No log |
|
87 |
-
| No log |
|
88 |
-
| No log |
|
89 |
-
| No log |
|
90 |
-
| No log |
|
91 |
-
| No log |
|
92 |
-
| No log |
|
93 |
|
94 |
|
95 |
### Framework versions
|
|
|
20 |
metrics:
|
21 |
- name: Precision
|
22 |
type: precision
|
23 |
+
value: 0.8746976294146106
|
24 |
- name: Recall
|
25 |
type: recall
|
26 |
+
value: 0.904
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
+
value: 0.8891074502089993
|
30 |
- name: Accuracy
|
31 |
type: accuracy
|
32 |
+
value: 0.8368167202572347
|
33 |
---
|
34 |
|
35 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
39 |
|
40 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
|
41 |
It achieves the following results on the evaluation set:
|
42 |
+
- Loss: 0.6541
|
43 |
+
- Precision: 0.8747
|
44 |
+
- Recall: 0.904
|
45 |
+
- F1: 0.8891
|
46 |
+
- Accuracy: 0.8368
|
47 |
|
48 |
## Model description
|
49 |
|
|
|
63 |
|
64 |
The following hyperparameters were used during training:
|
65 |
- learning_rate: 1e-05
|
66 |
+
- train_batch_size: 6
|
67 |
- eval_batch_size: 16
|
68 |
- seed: 42
|
69 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
|
74 |
|
75 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
76 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
77 |
+
| No log | 1.0 | 25 | 1.2831 | 0.4033 | 0.4795 | 0.4381 | 0.6092 |
|
78 |
+
| No log | 2.0 | 50 | 0.8178 | 0.7266 | 0.7935 | 0.7586 | 0.7748 |
|
79 |
+
| No log | 3.0 | 75 | 0.6843 | 0.7951 | 0.8345 | 0.8143 | 0.7990 |
|
80 |
+
| No log | 4.0 | 100 | 0.6317 | 0.8024 | 0.861 | 0.8307 | 0.8161 |
|
81 |
+
| No log | 5.0 | 125 | 0.5964 | 0.8260 | 0.897 | 0.8600 | 0.8234 |
|
82 |
+
| No log | 6.0 | 150 | 0.6050 | 0.8204 | 0.87 | 0.8445 | 0.8207 |
|
83 |
+
| No log | 7.0 | 175 | 0.6281 | 0.8203 | 0.8765 | 0.8475 | 0.8168 |
|
84 |
+
| No log | 8.0 | 200 | 0.6228 | 0.8449 | 0.8985 | 0.8709 | 0.8235 |
|
85 |
+
| No log | 9.0 | 225 | 0.6213 | 0.8345 | 0.88 | 0.8567 | 0.8266 |
|
86 |
+
| No log | 10.0 | 250 | 0.6173 | 0.8450 | 0.897 | 0.8702 | 0.8357 |
|
87 |
+
| No log | 11.0 | 275 | 0.6476 | 0.8388 | 0.8895 | 0.8634 | 0.8299 |
|
88 |
+
| No log | 12.0 | 300 | 0.6359 | 0.8584 | 0.8945 | 0.8761 | 0.8382 |
|
89 |
+
| No log | 13.0 | 325 | 0.6469 | 0.8759 | 0.907 | 0.8912 | 0.8395 |
|
90 |
+
| No log | 14.0 | 350 | 0.6510 | 0.8729 | 0.9035 | 0.8880 | 0.8373 |
|
91 |
+
| No log | 15.0 | 375 | 0.6555 | 0.8656 | 0.902 | 0.8834 | 0.8354 |
|
92 |
+
| No log | 16.0 | 400 | 0.6541 | 0.8747 | 0.904 | 0.8891 | 0.8368 |
|
93 |
|
94 |
|
95 |
### Framework versions
|