--- tags: - generated_from_trainer datasets: - mp-02/funsd metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-funsd results: - task: name: Token Classification type: token-classification dataset: name: mp-02/funsd type: mp-02/funsd metrics: - name: Precision type: precision value: 0.8746976294146106 - name: Recall type: recall value: 0.904 - name: F1 type: f1 value: 0.8891074502089993 - name: Accuracy type: accuracy value: 0.8368167202572347 --- # layoutlmv3-finetuned-funsd This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset. It achieves the following results on the evaluation set: - Loss: 0.6541 - Precision: 0.8747 - Recall: 0.904 - F1: 0.8891 - Accuracy: 0.8368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 6 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 25 | 1.2831 | 0.4033 | 0.4795 | 0.4381 | 0.6092 | | No log | 2.0 | 50 | 0.8178 | 0.7266 | 0.7935 | 0.7586 | 0.7748 | | No log | 3.0 | 75 | 0.6843 | 0.7951 | 0.8345 | 0.8143 | 0.7990 | | No log | 4.0 | 100 | 0.6317 | 0.8024 | 0.861 | 0.8307 | 0.8161 | | No log | 5.0 | 125 | 0.5964 | 0.8260 | 0.897 | 0.8600 | 0.8234 | | No log | 6.0 | 150 | 0.6050 | 0.8204 | 0.87 | 0.8445 | 0.8207 | | No log | 7.0 | 175 | 0.6281 | 0.8203 | 0.8765 | 0.8475 | 0.8168 | | No log | 8.0 | 200 | 0.6228 | 0.8449 | 0.8985 | 0.8709 | 0.8235 | | No log | 9.0 | 225 | 0.6213 | 0.8345 | 0.88 | 0.8567 | 0.8266 | | No log | 10.0 | 250 | 0.6173 | 0.8450 | 0.897 | 0.8702 | 0.8357 | | No log | 11.0 | 275 | 0.6476 | 0.8388 | 0.8895 | 0.8634 | 0.8299 | | No log | 12.0 | 300 | 0.6359 | 0.8584 | 0.8945 | 0.8761 | 0.8382 | | No log | 13.0 | 325 | 0.6469 | 0.8759 | 0.907 | 0.8912 | 0.8395 | | No log | 14.0 | 350 | 0.6510 | 0.8729 | 0.9035 | 0.8880 | 0.8373 | | No log | 15.0 | 375 | 0.6555 | 0.8656 | 0.902 | 0.8834 | 0.8354 | | No log | 16.0 | 400 | 0.6541 | 0.8747 | 0.904 | 0.8891 | 0.8368 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 2.13.2 - Tokenizers 0.10.1