mradermacher commited on
Commit
c921e7e
1 Parent(s): a20a641

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -1,6 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  static quants of https://huggingface.co/ChocoLlama/ChocoLlama-2-7B-instruct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ChocoLlama/ChocoLlama-2-7B-instruct
3
+ datasets:
4
+ - BramVanroy/ultrachat_200k_dutch
5
+ - BramVanroy/stackoverflow-chat-dutch
6
+ - BramVanroy/alpaca-cleaned-dutch
7
+ - BramVanroy/dolly-15k-dutch
8
+ - BramVanroy/no_robots_dutch
9
+ - BramVanroy/ultra_feedback_dutch
10
+ language:
11
+ - nl
12
+ library_name: transformers
13
+ license: cc-by-nc-4.0
14
+ quantized_by: mradermacher
15
+ ---
16
+ ## About
17
+
18
  <!-- ### quantize_version: 2 -->
19
  <!-- ### output_tensor_quantised: 1 -->
20
  <!-- ### convert_type: hf -->
21
  <!-- ### vocab_type: -->
22
  <!-- ### tags: nicoboss -->
23
  static quants of https://huggingface.co/ChocoLlama/ChocoLlama-2-7B-instruct
24
+
25
+ <!-- provided-files -->
26
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
27
+ ## Usage
28
+
29
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
30
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
31
+ more details, including on how to concatenate multi-part files.
32
+
33
+ ## Provided Quants
34
+
35
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
36
+
37
+ | Link | Type | Size/GB | Notes |
38
+ |:-----|:-----|--------:|:------|
39
+ | [GGUF](https://huggingface.co/mradermacher/ChocoLlama-2-7B-instruct-GGUF/resolve/main/ChocoLlama-2-7B-instruct.Q2_K.gguf) | Q2_K | 2.6 | |
40
+ | [GGUF](https://huggingface.co/mradermacher/ChocoLlama-2-7B-instruct-GGUF/resolve/main/ChocoLlama-2-7B-instruct.Q3_K_S.gguf) | Q3_K_S | 3.0 | |
41
+ | [GGUF](https://huggingface.co/mradermacher/ChocoLlama-2-7B-instruct-GGUF/resolve/main/ChocoLlama-2-7B-instruct.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality |
42
+ | [GGUF](https://huggingface.co/mradermacher/ChocoLlama-2-7B-instruct-GGUF/resolve/main/ChocoLlama-2-7B-instruct.Q3_K_L.gguf) | Q3_K_L | 3.7 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/ChocoLlama-2-7B-instruct-GGUF/resolve/main/ChocoLlama-2-7B-instruct.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended |
44
+ | [GGUF](https://huggingface.co/mradermacher/ChocoLlama-2-7B-instruct-GGUF/resolve/main/ChocoLlama-2-7B-instruct.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended |
45
+ | [GGUF](https://huggingface.co/mradermacher/ChocoLlama-2-7B-instruct-GGUF/resolve/main/ChocoLlama-2-7B-instruct.Q5_K_S.gguf) | Q5_K_S | 4.8 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/ChocoLlama-2-7B-instruct-GGUF/resolve/main/ChocoLlama-2-7B-instruct.Q6_K.gguf) | Q6_K | 5.6 | very good quality |
47
+ | [GGUF](https://huggingface.co/mradermacher/ChocoLlama-2-7B-instruct-GGUF/resolve/main/ChocoLlama-2-7B-instruct.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality |
48
+ | [GGUF](https://huggingface.co/mradermacher/ChocoLlama-2-7B-instruct-GGUF/resolve/main/ChocoLlama-2-7B-instruct.f16.gguf) | f16 | 13.6 | 16 bpw, overkill |
49
+
50
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
51
+ types (lower is better):
52
+
53
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
54
+
55
+ And here are Artefact2's thoughts on the matter:
56
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
57
+
58
+ ## FAQ / Model Request
59
+
60
+ See https://huggingface.co/mradermacher/model_requests for some answers to
61
+ questions you might have and/or if you want some other model quantized.
62
+
63
+ ## Thanks
64
+
65
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
66
+ me use its servers and providing upgrades to my workstation to enable
67
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
68
+
69
+ <!-- end -->