Faro-Yi-34B-i1-GGUF / README.md
mradermacher's picture
auto-patch README.md
a5c4be7 verified
|
raw
history blame
3.92 kB
---
datasets:
- wenbopan/Fusang-v1
- wenbopan/OpenOrca-zh-20k
exported_from: wenbopan/Faro-Yi-34B
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 1 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
weighted/imatrix quants of https://huggingface.co/wenbopan/Faro-Yi-34B
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Faro-Yi-34B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.4 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-IQ2_S.gguf) | i1-IQ2_S | 11.0 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-IQ2_M.gguf) | i1-IQ2_M | 11.9 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-Q2_K.gguf) | i1-Q2_K | 12.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 13.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.3 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.1 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-IQ3_S.gguf) | i1-IQ3_S | 15.1 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-IQ3_M.gguf) | i1-IQ3_M | 15.7 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.8 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.2 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-Q4_0.gguf) | i1-Q4_0 | 19.6 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 19.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 23.8 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 24.4 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-i1-GGUF/resolve/main/Faro-Yi-34B.i1-Q6_K.gguf) | i1-Q6_K | 28.3 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->