--- base_model: Iker/Llama-3-Instruct-Neurona-8b datasets: - pinzhenchen/alpaca-cleaned-es - Danielbrdz/Barcenas-Economia - HiTZ/casimedicos-exp - somosnlp/coser_resumenes - csebuetnlp/CrossSum - Iker/Document-Translation-en-es - somosnlp/es-inclusive-language-it - FreedomIntelligence/evol-instruct-spanish - glaiveai/glaive-code-assistant-v3 - glaiveai/glaive-function-calling-v2 - Iker/InstructTranslation-EN-ES - somosnlp/lenguaje-claro-dataset - somosnlp/LingComp_QA - bltlab/lr-sum - Iker/NoticIA - xaviviro/oasst2_es_gpt - teknium/OpenHermes-2.5 - Iker/OpenHermes-2.5-Spanish - Helsinki-NLP/opus-100 - projecte-aina/RAG_Multilingual - sem_eval_2018_task_1 - davidstap/ted_talks - HiTZ/This-is-not-a-dataset - wikipedia language: - es - en library_name: transformers license: llama3 quantized_by: mradermacher tags: - synthetic --- ## About static quants of https://huggingface.co/Iker/Llama-3-Instruct-Neurona-8b weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Instruct-Neurona-8b-GGUF/resolve/main/Llama-3-Instruct-Neurona-8b.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.