--- base_model: - jondurbin/bagel-dpo-34b-v0.2 - abacusai/MetaMath-Bagel-DPO-34B exported_from: louisbrulenaudet/Pearl-34B-ties language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - jondurbin/bagel-dpo-34b-v0.2 - abacusai/MetaMath-Bagel-DPO-34B --- ## About weighted/imatrix quants of https://huggingface.co/louisbrulenaudet/Pearl-34B-ties static quants are available at https://huggingface.co/mradermacher/Pearl-34B-ties-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ2_M.gguf) | i1-IQ2_M | 12.5 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q2_K.gguf) | i1-Q2_K | 13.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 14.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q3_K_M.gguf) | i1-Q3_K_M | 17.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-IQ4_XS.gguf) | i1-IQ4_XS | 19.1 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q4_0.gguf) | i1-Q4_0 | 20.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q4_K_S.gguf) | i1-Q4_K_S | 20.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q4_K_M.gguf) | i1-Q4_K_M | 21.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q5_K_S.gguf) | i1-Q5_K_S | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q5_K_M.gguf) | i1-Q5_K_M | 25.0 | | | [GGUF](https://huggingface.co/mradermacher/Pearl-34B-ties-i1-GGUF/resolve/main/Pearl-34B-ties.i1-Q6_K.gguf) | i1-Q6_K | 28.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.