File size: 5,038 Bytes
8a1134e 4338de8 bdc6f5a 8a1134e bdc6f5a 8a1134e 66cea99 4237ab0 f6bebe9 66cea99 5e689bd 66cea99 f6bebe9 62cd9a9 f6bebe9 5e689bd 8b8c43e cfdd2f0 3fee3db df4f108 cfdd2f0 170a808 14c4784 cfdd2f0 170a808 cfdd2f0 14c4784 cfdd2f0 8b8c43e 1b3abe8 019e9f1 849dd49 170a808 6a13beb df4f108 6a13beb f6bebe9 66cea99 d75ce17 62cd9a9 d75ce17 62cd9a9 8948e2e 4338de8 a24601e f6bebe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: cognitivecomputations/Samantha-1.1-70b
datasets:
- ehartford/samantha-data
language:
- en
library_name: transformers
license: llama2
quantized_by: mradermacher
---
## About
weighted/imatrix quants of https://huggingface.co/cognitivecomputations/Samantha-1.1-70b
The weights were calculated using 164k semi-random english tokens.
<!-- provided-files -->
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ1_S.gguf) | i1-IQ1_S | 15.0 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ1_M.gguf) | i1-IQ1_M | 16.4 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.7 | |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.8 | |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ2_S.gguf) | i1-IQ2_S | 21.8 | |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ2_M.gguf) | i1-IQ2_M | 23.7 | |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q2_K.gguf) | i1-Q2_K | 25.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.6 | |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q3_K_XS.gguf) | i1-Q3_K_XS | 28.7 | |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ3_S.gguf) | i1-IQ3_S | 30.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.3 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ3_M.gguf) | i1-IQ3_M | 31.4 | |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.7 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.6 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 37.2 | |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-IQ4_NL.gguf) | i1-IQ4_NL | 39.4 | slightly worse than Q4_K_S |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q4_0.gguf) | i1-Q4_0 | 39.4 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.9 | |
| [GGUF](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 49.2 | |
| [PART 1](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Samantha-1.1-70b-i1-GGUF/resolve/main/Samantha-1.1-70b.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 57.0 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|