File size: 3,536 Bytes
9239af2
6865217
9239af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc7b788
6edfd07
9239af2
 
 
 
 
 
 
 
 
 
 
 
c03d68d
843b527
767d769
a94dd0f
e70c08f
c03d68d
767d769
e70c08f
a94dd0f
 
2774851
 
767d769
9239af2
 
 
 
 
 
 
 
 
 
6865217
 
 
 
 
ec8ded1
 
 
 
 
 
9239af2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model: Steelskull/Umbra-v3-MoE-4x11b
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- moe
- frankenmoe
- merge
- mergekit
- Himitsui/Kaiju-11B
- Sao10K/Fimbulvetr-11B-v2
- decapoda-research/Antares-11b-v2
- beberik/Nyxene-v3-11B
---
## About

static quants of https://huggingface.co/Steelskull/Umbra-v3-MoE-4x11b

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q2_K.gguf) | Q2_K | 13.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.IQ3_XS.gguf) | IQ3_XS | 14.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q3_K_S.gguf) | Q3_K_S | 15.8 |  |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.IQ3_S.gguf) | IQ3_S | 15.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.IQ3_M.gguf) | IQ3_M | 16.1 |  |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q3_K_M.gguf) | Q3_K_M | 17.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q3_K_L.gguf) | Q3_K_L | 19.0 |  |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.IQ4_XS.gguf) | IQ4_XS | 19.7 |  |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q4_K_S.gguf) | Q4_K_S | 20.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q4_K_M.gguf) | Q4_K_M | 22.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q5_K_S.gguf) | Q5_K_S | 25.1 |  |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q5_K_M.gguf) | Q5_K_M | 25.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q6_K.gguf) | Q6_K | 29.9 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q8_0.gguf) | Q8_0 | 38.6 | fast, best quality |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->