--- base_model: internlm/internlm2-20b datasets: - ai2_arc - allenai/ultrafeedback_binarized_cleaned - argilla/distilabel-intel-orca-dpo-pairs - jondurbin/airoboros-3.2 - codeparrot/apps - facebook/belebele - bluemoon-fandom-1-1-rp-cleaned - boolq - camel-ai/biology - camel-ai/chemistry - camel-ai/math - camel-ai/physics - jondurbin/contextual-dpo-v0.1 - jondurbin/gutenberg-dpo-v0.1 - jondurbin/py-dpo-v0.1 - jondurbin/truthy-dpo-v0.1 - LDJnr/Capybara - jondurbin/cinematika-v0.1 - WizardLM/WizardLM_evol_instruct_70k - glaiveai/glaive-function-calling-v2 - jondurbin/gutenberg-dpo-v0.1 - grimulkan/LimaRP-augmented - lmsys/lmsys-chat-1m - ParisNeo/lollms_aware_dataset - TIGER-Lab/MathInstruct - Muennighoff/natural-instructions - openbookqa - kingbri/PIPPA-shareGPT - piqa - Vezora/Tested-22k-Python-Alpaca - ropes - cakiki/rosetta-code - Open-Orca/SlimOrca - b-mc2/sql-create-context - squad_v2 - mattpscott/airoboros-summarization - migtissera/Synthia-v1.3 - unalignment/toxic-dpo-v0.2 - WhiteRabbitNeo/WRN-Chapter-1 - WhiteRabbitNeo/WRN-Chapter-2 - winogrande exported_from: jondurbin/bagel-dpo-20b-v04 language: - en library_name: transformers license: other license_link: https://huggingface.co/internlm/internlm2-20b#open-source-license license_name: internlm2-20b quantized_by: mradermacher --- ## About weighted/imatrix quants of https://huggingface.co/jondurbin/bagel-dpo-20b-v04 static quants are available at https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q2_K.gguf) | i1-Q2_K | 8.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q3_K_S.gguf) | i1-Q3_K_S | 9.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q3_K_M.gguf) | i1-Q3_K_M | 10.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q4_K_S.gguf) | i1-Q4_K_S | 12.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q4_K_M.gguf) | i1-Q4_K_M | 12.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bagel-dpo-20b-v04-i1-GGUF/resolve/main/bagel-dpo-20b-v04.i1-Q6_K.gguf) | i1-Q6_K | 17.1 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.