Transformers
GGUF
English
Inference Endpoints
conversational
mradermacher commited on
Commit
548223a
1 Parent(s): b4bf72d

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -1,6 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/allenai/llama-3-tulu-2-dpo-70b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allenai/llama-3-tulu-2-dpo-70b
3
+ datasets:
4
+ - allenai/tulu-v2-sft-mixture
5
+ - argilla/ultrafeedback-binarized-preferences-cleaned
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: apache-2.0
10
+ quantized_by: mradermacher
11
+ ---
12
+ ## About
13
+
14
  <!-- ### quantize_version: 2 -->
15
  <!-- ### output_tensor_quantised: 1 -->
16
  <!-- ### convert_type: hf -->
17
  <!-- ### vocab_type: -->
18
  <!-- ### tags: -->
19
  static quants of https://huggingface.co/allenai/llama-3-tulu-2-dpo-70b
20
+
21
+ <!-- provided-files -->
22
+ weighted/imatrix quants are available at https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-i1-GGUF
23
+ ## Usage
24
+
25
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
26
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
27
+ more details, including on how to concatenate multi-part files.
28
+
29
+ ## Provided Quants
30
+
31
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
32
+
33
+ | Link | Type | Size/GB | Notes |
34
+ |:-----|:-----|--------:|:------|
35
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q2_K.gguf) | Q2_K | 26.5 | |
36
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.IQ3_XS.gguf) | IQ3_XS | 29.4 | |
37
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.IQ3_S.gguf) | IQ3_S | 31.0 | beats Q3_K* |
38
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q3_K_S.gguf) | Q3_K_S | 31.0 | |
39
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.IQ3_M.gguf) | IQ3_M | 32.0 | |
40
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality |
41
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q3_K_L.gguf) | Q3_K_L | 37.2 | |
42
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.IQ4_XS.gguf) | IQ4_XS | 38.4 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended |
44
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended |
45
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q5_K_S.gguf) | Q5_K_S | 48.8 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q5_K_M.gguf) | Q5_K_M | 50.0 | |
47
+ | [PART 1](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality |
48
+ | [PART 1](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-GGUF/resolve/main/llama-3-tulu-2-dpo-70b.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality |
49
+
50
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
51
+ types (lower is better):
52
+
53
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
54
+
55
+ And here are Artefact2's thoughts on the matter:
56
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
57
+
58
+ ## FAQ / Model Request
59
+
60
+ See https://huggingface.co/mradermacher/model_requests for some answers to
61
+ questions you might have and/or if you want some other model quantized.
62
+
63
+ ## Thanks
64
+
65
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
66
+ me use its servers and providing upgrades to my workstation to enable
67
+ this work in my free time.
68
+
69
+ <!-- end -->