File size: 3,655 Bytes
cd93ad2 eb8dd14 cd93ad2 eb8dd14 609b074 cd93ad2 609b074 68002ec 609b074 68002ec 609b074 11e39f2 68002ec 609b074 11e39f2 cd93ad2 c90b104 cd93ad2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
language:
- en
library_name: transformers
license: cc-by-nc-2.0
quantized_by: mradermacher
---
## About
weighted/imatrix quants of https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf
<!-- provided-files -->
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-IQ1_S.gguf) | i1-IQ1_S | 15.0 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.7 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.8 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-IQ2_S.gguf) | i1-IQ2_S | 21.8 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-IQ2_M.gguf) | i1-IQ2_M | 23.7 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-Q2_K.gguf) | i1-Q2_K | 25.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.6 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-IQ3_S.gguf) | i1-IQ3_S | 30.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.3 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-IQ3_M.gguf) | i1-IQ3_M | 31.4 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.7 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.6 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.9 | |
| [GGUF](https://huggingface.co/mradermacher/lzlv_70b_fp16_hf-i1-GGUF/resolve/main/lzlv_70b_fp16_hf.i1-Q5_K_M.gguf) | i1-Q5_K_M | 49.2 | |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|