File size: 2,713 Bytes
d7218ff d7de725 c0547cb a72e6c4 d7de725 1005f38 d7218ff 3b9f4be d7218ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
base_model:
- 152334H/miqu-1-70b-sf
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
weighted/imatrix quants of https://huggingface.co/wolfram/miqu-1-103b
<!-- provided-files -->
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ1_S.gguf) | i1-IQ1_S | 22.1 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 27.7 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 30.8 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ2_S.gguf) | i1-IQ2_S | 32.3 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ2_M.gguf) | i1-IQ2_M | 35.1 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 40.0 | fast, lower quality |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 42.5 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ3_S.gguf) | i1-IQ3_S | 45.0 | fast, beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ3_M.gguf) | i1-IQ3_M | 46.5 | |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q3_K_M.gguf.part2of2) | i1-Q3_K_M | 50.0 | IQ3_S probably better |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q4_K_M.gguf.part2of2) | i1-Q4_K_M | 62.3 | fast, medium quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
<!-- end -->
|