File size: 2,740 Bytes
8b7b946 2f5f3ed 8b7b946 2f5f3ed 03d2ead 8b7b946 2f5f3ed 8b7b946 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_trashify_box_detector_with_data_aug
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr_finetuned_trashify_box_detector_with_data_aug
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0704
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 100.4735 | 1.0 | 50 | 8.0297 |
| 4.369 | 2.0 | 100 | 2.7376 |
| 2.5518 | 3.0 | 150 | 2.1839 |
| 2.2226 | 4.0 | 200 | 1.9228 |
| 1.9906 | 5.0 | 250 | 1.7408 |
| 1.8219 | 6.0 | 300 | 1.5573 |
| 1.6974 | 7.0 | 350 | 1.4779 |
| 1.6027 | 8.0 | 400 | 1.4510 |
| 1.5517 | 9.0 | 450 | 1.3711 |
| 1.4491 | 10.0 | 500 | 1.3177 |
| 1.4335 | 11.0 | 550 | 1.2811 |
| 1.3645 | 12.0 | 600 | 1.2475 |
| 1.3314 | 13.0 | 650 | 1.2060 |
| 1.2973 | 14.0 | 700 | 1.1874 |
| 1.2506 | 15.0 | 750 | 1.1794 |
| 1.2319 | 16.0 | 800 | 1.1657 |
| 1.1479 | 17.0 | 850 | 1.1300 |
| 1.1466 | 18.0 | 900 | 1.1179 |
| 1.1138 | 19.0 | 950 | 1.1095 |
| 1.1153 | 20.0 | 1000 | 1.0961 |
| 1.0894 | 21.0 | 1050 | 1.0790 |
| 1.0691 | 22.0 | 1100 | 1.0870 |
| 1.0619 | 23.0 | 1150 | 1.0804 |
| 1.0459 | 24.0 | 1200 | 1.0717 |
| 1.0363 | 25.0 | 1250 | 1.0704 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1
|