File size: 2,740 Bytes
8b7b946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f5f3ed
8b7b946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f5f3ed
03d2ead
8b7b946
 
 
 
 
 
 
2f5f3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b7b946
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_trashify_box_detector_with_data_aug
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr_finetuned_trashify_box_detector_with_data_aug

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0704

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 25
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 100.4735      | 1.0   | 50   | 8.0297          |
| 4.369         | 2.0   | 100  | 2.7376          |
| 2.5518        | 3.0   | 150  | 2.1839          |
| 2.2226        | 4.0   | 200  | 1.9228          |
| 1.9906        | 5.0   | 250  | 1.7408          |
| 1.8219        | 6.0   | 300  | 1.5573          |
| 1.6974        | 7.0   | 350  | 1.4779          |
| 1.6027        | 8.0   | 400  | 1.4510          |
| 1.5517        | 9.0   | 450  | 1.3711          |
| 1.4491        | 10.0  | 500  | 1.3177          |
| 1.4335        | 11.0  | 550  | 1.2811          |
| 1.3645        | 12.0  | 600  | 1.2475          |
| 1.3314        | 13.0  | 650  | 1.2060          |
| 1.2973        | 14.0  | 700  | 1.1874          |
| 1.2506        | 15.0  | 750  | 1.1794          |
| 1.2319        | 16.0  | 800  | 1.1657          |
| 1.1479        | 17.0  | 850  | 1.1300          |
| 1.1466        | 18.0  | 900  | 1.1179          |
| 1.1138        | 19.0  | 950  | 1.1095          |
| 1.1153        | 20.0  | 1000 | 1.0961          |
| 1.0894        | 21.0  | 1050 | 1.0790          |
| 1.0691        | 22.0  | 1100 | 1.0870          |
| 1.0619        | 23.0  | 1150 | 1.0804          |
| 1.0459        | 24.0  | 1200 | 1.0717          |
| 1.0363        | 25.0  | 1250 | 1.0704          |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1