File size: 3,334 Bytes
c1ad50a
 
 
 
 
6bfb409
 
 
 
 
c1ad50a
 
 
 
 
 
 
 
b85621c
c1ad50a
7430ace
6bfb409
7430ace
 
 
 
 
c1ad50a
 
 
b85621c
 
 
 
 
 
 
c1ad50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7430ace
c1ad50a
 
 
 
00240d1
c1ad50a
6bfb409
 
 
 
7430ace
 
 
 
 
6bfb409
 
c1ad50a
 
 
 
 
 
0cdfb3d
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
- f1
model-index:
- name: deberta-v3-ft-news-sentiment-analisys
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DeBERTa-v3-small-ft-news-sentiment-analisys

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0233
- Precision: 0.9940
- Recall: 0.9940
- Accuracy: 0.9940
- F1: 0.9940

## Model description

[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data. 

In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we further improved the efficiency of DeBERTa using ELECTRA-Style pre-training with Gradient Disentangled Embedding Sharing. Compared to DeBERTa,  our V3 version significantly improves the model performance on downstream tasks.  You can find more technique details about the new model from our [paper](https://arxiv.org/abs/2111.09543).

Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates.

The DeBERTa V3 small model comes with 6 layers and a hidden size of 768. It has **44M** backbone parameters  with a vocabulary containing 128K tokens which introduces 98M parameters in the Embedding layer.  This model was trained using the 160GB data as DeBERTa V2.

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:|
| No log        | 1.0   | 214  | 0.1865          | 0.9323    | 0.9323 | 0.9323   | 0.9323 |
| No log        | 2.0   | 428  | 0.0742          | 0.9771    | 0.9771 | 0.9771   | 0.9771 |
| 0.2737        | 3.0   | 642  | 0.0479          | 0.9855    | 0.9855 | 0.9855   | 0.9855 |
| 0.2737        | 4.0   | 856  | 0.0284          | 0.9923    | 0.9923 | 0.9923   | 0.9923 |
| 0.0586        | 5.0   | 1070 | 0.0233          | 0.9940    | 0.9940 | 0.9940   | 0.9940 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0

## Citation

```BibText
@misc {manuel_romero_2024,
	author       = { {Manuel Romero} },
	title        = { deberta-v3-ft-financial-news-sentiment-analysis (Revision 7430ace) },
	year         = 2024,
	url          = { https://huggingface.co/mrm8488/deberta-v3-ft-financial-news-sentiment-analysis },
	doi          = { 10.57967/hf/1666 },
	publisher    = { Hugging Face }
}
```