File size: 3,334 Bytes
c1ad50a 6bfb409 c1ad50a b85621c c1ad50a 7430ace 6bfb409 7430ace c1ad50a b85621c c1ad50a 7430ace c1ad50a 00240d1 c1ad50a 6bfb409 7430ace 6bfb409 c1ad50a 0cdfb3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
- f1
model-index:
- name: deberta-v3-ft-news-sentiment-analisys
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTa-v3-small-ft-news-sentiment-analisys
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0233
- Precision: 0.9940
- Recall: 0.9940
- Accuracy: 0.9940
- F1: 0.9940
## Model description
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we further improved the efficiency of DeBERTa using ELECTRA-Style pre-training with Gradient Disentangled Embedding Sharing. Compared to DeBERTa, our V3 version significantly improves the model performance on downstream tasks. You can find more technique details about the new model from our [paper](https://arxiv.org/abs/2111.09543).
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates.
The DeBERTa V3 small model comes with 6 layers and a hidden size of 768. It has **44M** backbone parameters with a vocabulary containing 128K tokens which introduces 98M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:|
| No log | 1.0 | 214 | 0.1865 | 0.9323 | 0.9323 | 0.9323 | 0.9323 |
| No log | 2.0 | 428 | 0.0742 | 0.9771 | 0.9771 | 0.9771 | 0.9771 |
| 0.2737 | 3.0 | 642 | 0.0479 | 0.9855 | 0.9855 | 0.9855 | 0.9855 |
| 0.2737 | 4.0 | 856 | 0.0284 | 0.9923 | 0.9923 | 0.9923 | 0.9923 |
| 0.0586 | 5.0 | 1070 | 0.0233 | 0.9940 | 0.9940 | 0.9940 | 0.9940 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
## Citation
```BibText
@misc {manuel_romero_2024,
author = { {Manuel Romero} },
title = { deberta-v3-ft-financial-news-sentiment-analysis (Revision 7430ace) },
year = 2024,
url = { https://huggingface.co/mrm8488/deberta-v3-ft-financial-news-sentiment-analysis },
doi = { 10.57967/hf/1666 },
publisher = { Hugging Face }
}
```
|