mrm8488 commited on
Commit
ffad4be
1 Parent(s): 071e39c

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,728 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:100K<n<1M
10
+ - loss:MatryoshkaLoss
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: distilbert/distilroberta-base
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: He shrugged.
26
+ sentences:
27
+ - Then he shrugged.
28
+ - Two people are dancing.
29
+ - The people are Indian.
30
+ - source_sentence: a young girl
31
+ sentences:
32
+ - A girl is playing.
33
+ - A dog playing outside.
34
+ - The men are moving.
35
+ - source_sentence: girl sleeps
36
+ sentences:
37
+ - A little girl is sleep.
38
+ - Two women are walking.
39
+ - three men are pictured
40
+ - source_sentence: He walked.
41
+ sentences:
42
+ - A man is moving around.
43
+ - A young man is running.
44
+ - What idiots girls are!
45
+ - source_sentence: '''Go now.'''
46
+ sentences:
47
+ - Now go.
48
+ - The door did not budge.
49
+ - I never knew the man.
50
+ pipeline_tag: sentence-similarity
51
+ model-index:
52
+ - name: SentenceTransformer based on distilbert/distilroberta-base
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev 768
59
+ type: sts-dev-768
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.8418367310465795
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.8485984004433933
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.8356556933767024
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.8341402433895243
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.8378021883964464
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.8364904078404392
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.7476524989991268
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.744450587024694
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.8418367310465795
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.8485984004433933
90
+ name: Spearman Max
91
+ - task:
92
+ type: semantic-similarity
93
+ name: Semantic Similarity
94
+ dataset:
95
+ name: sts dev 512
96
+ type: sts-dev-512
97
+ metrics:
98
+ - type: pearson_cosine
99
+ value: 0.8416891989714739
100
+ name: Pearson Cosine
101
+ - type: spearman_cosine
102
+ value: 0.8490082509626217
103
+ name: Spearman Cosine
104
+ - type: pearson_manhattan
105
+ value: 0.8348187780435371
106
+ name: Pearson Manhattan
107
+ - type: spearman_manhattan
108
+ value: 0.8332638443518806
109
+ name: Spearman Manhattan
110
+ - type: pearson_euclidean
111
+ value: 0.837008948364763
112
+ name: Pearson Euclidean
113
+ - type: spearman_euclidean
114
+ value: 0.8356608810942396
115
+ name: Spearman Euclidean
116
+ - type: pearson_dot
117
+ value: 0.7426437744526075
118
+ name: Pearson Dot
119
+ - type: spearman_dot
120
+ value: 0.7393063147821313
121
+ name: Spearman Dot
122
+ - type: pearson_max
123
+ value: 0.8416891989714739
124
+ name: Pearson Max
125
+ - type: spearman_max
126
+ value: 0.8490082509626217
127
+ name: Spearman Max
128
+ - task:
129
+ type: semantic-similarity
130
+ name: Semantic Similarity
131
+ dataset:
132
+ name: sts dev 256
133
+ type: sts-dev-256
134
+ metrics:
135
+ - type: pearson_cosine
136
+ value: 0.8368212220308662
137
+ name: Pearson Cosine
138
+ - type: spearman_cosine
139
+ value: 0.8458532859579723
140
+ name: Spearman Cosine
141
+ - type: pearson_manhattan
142
+ value: 0.8282949195581827
143
+ name: Pearson Manhattan
144
+ - type: spearman_manhattan
145
+ value: 0.8279757292284411
146
+ name: Spearman Manhattan
147
+ - type: pearson_euclidean
148
+ value: 0.8304309516656533
149
+ name: Pearson Euclidean
150
+ - type: spearman_euclidean
151
+ value: 0.8301347336633305
152
+ name: Spearman Euclidean
153
+ - type: pearson_dot
154
+ value: 0.7158283880571648
155
+ name: Pearson Dot
156
+ - type: spearman_dot
157
+ value: 0.7114038350641958
158
+ name: Spearman Dot
159
+ - type: pearson_max
160
+ value: 0.8368212220308662
161
+ name: Pearson Max
162
+ - type: spearman_max
163
+ value: 0.8458532859579723
164
+ name: Spearman Max
165
+ - task:
166
+ type: semantic-similarity
167
+ name: Semantic Similarity
168
+ dataset:
169
+ name: sts dev 128
170
+ type: sts-dev-128
171
+ metrics:
172
+ - type: pearson_cosine
173
+ value: 0.8291552182220155
174
+ name: Pearson Cosine
175
+ - type: spearman_cosine
176
+ value: 0.8410315378567165
177
+ name: Spearman Cosine
178
+ - type: pearson_manhattan
179
+ value: 0.8205197124842151
180
+ name: Pearson Manhattan
181
+ - type: spearman_manhattan
182
+ value: 0.8211956528048456
183
+ name: Spearman Manhattan
184
+ - type: pearson_euclidean
185
+ value: 0.8218377581296912
186
+ name: Pearson Euclidean
187
+ - type: spearman_euclidean
188
+ value: 0.8223376697977559
189
+ name: Spearman Euclidean
190
+ - type: pearson_dot
191
+ value: 0.6736747525126793
192
+ name: Pearson Dot
193
+ - type: spearman_dot
194
+ value: 0.6704632728499174
195
+ name: Spearman Dot
196
+ - type: pearson_max
197
+ value: 0.8291552182220155
198
+ name: Pearson Max
199
+ - type: spearman_max
200
+ value: 0.8410315378567165
201
+ name: Spearman Max
202
+ - task:
203
+ type: semantic-similarity
204
+ name: Semantic Similarity
205
+ dataset:
206
+ name: sts dev 64
207
+ type: sts-dev-64
208
+ metrics:
209
+ - type: pearson_cosine
210
+ value: 0.8201110050860942
211
+ name: Pearson Cosine
212
+ - type: spearman_cosine
213
+ value: 0.835036509147006
214
+ name: Spearman Cosine
215
+ - type: pearson_manhattan
216
+ value: 0.8028297556674707
217
+ name: Pearson Manhattan
218
+ - type: spearman_manhattan
219
+ value: 0.8048509047037822
220
+ name: Spearman Manhattan
221
+ - type: pearson_euclidean
222
+ value: 0.8046682420071583
223
+ name: Pearson Euclidean
224
+ - type: spearman_euclidean
225
+ value: 0.8063788129340022
226
+ name: Spearman Euclidean
227
+ - type: pearson_dot
228
+ value: 0.6171580093307325
229
+ name: Pearson Dot
230
+ - type: spearman_dot
231
+ value: 0.6176751811391049
232
+ name: Spearman Dot
233
+ - type: pearson_max
234
+ value: 0.8201110050860942
235
+ name: Pearson Max
236
+ - type: spearman_max
237
+ value: 0.835036509147006
238
+ name: Spearman Max
239
+ ---
240
+
241
+ # SentenceTransformer based on distilbert/distilroberta-base
242
+
243
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
244
+
245
+ ## Model Details
246
+
247
+ ### Model Description
248
+ - **Model Type:** Sentence Transformer
249
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
250
+ - **Maximum Sequence Length:** 512 tokens
251
+ - **Output Dimensionality:** 768 tokens
252
+ - **Similarity Function:** Cosine Similarity
253
+ - **Training Dataset:**
254
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
255
+ - **Language:** en
256
+ <!-- - **License:** Unknown -->
257
+
258
+ ### Model Sources
259
+
260
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
261
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
262
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
263
+
264
+ ### Full Model Architecture
265
+
266
+ ```
267
+ SentenceTransformer(
268
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
269
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
270
+ )
271
+ ```
272
+
273
+ ## Usage
274
+
275
+ ### Direct Usage (Sentence Transformers)
276
+
277
+ First install the Sentence Transformers library:
278
+
279
+ ```bash
280
+ pip install -U sentence-transformers
281
+ ```
282
+
283
+ Then you can load this model and run inference.
284
+ ```python
285
+ from sentence_transformers import SentenceTransformer
286
+
287
+ # Download from the 🤗 Hub
288
+ model = SentenceTransformer("sentence_transformers_model_id")
289
+ # Run inference
290
+ sentences = [
291
+ "'Go now.'",
292
+ 'Now go.',
293
+ 'The door did not budge.',
294
+ ]
295
+ embeddings = model.encode(sentences)
296
+ print(embeddings.shape)
297
+ # [3, 768]
298
+
299
+ # Get the similarity scores for the embeddings
300
+ similarities = model.similarity(embeddings, embeddings)
301
+ print(similarities.shape)
302
+ # [3, 3]
303
+ ```
304
+
305
+ <!--
306
+ ### Direct Usage (Transformers)
307
+
308
+ <details><summary>Click to see the direct usage in Transformers</summary>
309
+
310
+ </details>
311
+ -->
312
+
313
+ <!--
314
+ ### Downstream Usage (Sentence Transformers)
315
+
316
+ You can finetune this model on your own dataset.
317
+
318
+ <details><summary>Click to expand</summary>
319
+
320
+ </details>
321
+ -->
322
+
323
+ <!--
324
+ ### Out-of-Scope Use
325
+
326
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
327
+ -->
328
+
329
+ ## Evaluation
330
+
331
+ ### Metrics
332
+
333
+ #### Semantic Similarity
334
+ * Dataset: `sts-dev-768`
335
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
336
+
337
+ | Metric | Value |
338
+ |:--------------------|:-----------|
339
+ | pearson_cosine | 0.8418 |
340
+ | **spearman_cosine** | **0.8486** |
341
+ | pearson_manhattan | 0.8357 |
342
+ | spearman_manhattan | 0.8341 |
343
+ | pearson_euclidean | 0.8378 |
344
+ | spearman_euclidean | 0.8365 |
345
+ | pearson_dot | 0.7477 |
346
+ | spearman_dot | 0.7445 |
347
+ | pearson_max | 0.8418 |
348
+ | spearman_max | 0.8486 |
349
+
350
+ #### Semantic Similarity
351
+ * Dataset: `sts-dev-512`
352
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
353
+
354
+ | Metric | Value |
355
+ |:--------------------|:----------|
356
+ | pearson_cosine | 0.8417 |
357
+ | **spearman_cosine** | **0.849** |
358
+ | pearson_manhattan | 0.8348 |
359
+ | spearman_manhattan | 0.8333 |
360
+ | pearson_euclidean | 0.837 |
361
+ | spearman_euclidean | 0.8357 |
362
+ | pearson_dot | 0.7426 |
363
+ | spearman_dot | 0.7393 |
364
+ | pearson_max | 0.8417 |
365
+ | spearman_max | 0.849 |
366
+
367
+ #### Semantic Similarity
368
+ * Dataset: `sts-dev-256`
369
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
370
+
371
+ | Metric | Value |
372
+ |:--------------------|:-----------|
373
+ | pearson_cosine | 0.8368 |
374
+ | **spearman_cosine** | **0.8459** |
375
+ | pearson_manhattan | 0.8283 |
376
+ | spearman_manhattan | 0.828 |
377
+ | pearson_euclidean | 0.8304 |
378
+ | spearman_euclidean | 0.8301 |
379
+ | pearson_dot | 0.7158 |
380
+ | spearman_dot | 0.7114 |
381
+ | pearson_max | 0.8368 |
382
+ | spearman_max | 0.8459 |
383
+
384
+ #### Semantic Similarity
385
+ * Dataset: `sts-dev-128`
386
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
387
+
388
+ | Metric | Value |
389
+ |:--------------------|:----------|
390
+ | pearson_cosine | 0.8292 |
391
+ | **spearman_cosine** | **0.841** |
392
+ | pearson_manhattan | 0.8205 |
393
+ | spearman_manhattan | 0.8212 |
394
+ | pearson_euclidean | 0.8218 |
395
+ | spearman_euclidean | 0.8223 |
396
+ | pearson_dot | 0.6737 |
397
+ | spearman_dot | 0.6705 |
398
+ | pearson_max | 0.8292 |
399
+ | spearman_max | 0.841 |
400
+
401
+ #### Semantic Similarity
402
+ * Dataset: `sts-dev-64`
403
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
404
+
405
+ | Metric | Value |
406
+ |:--------------------|:----------|
407
+ | pearson_cosine | 0.8201 |
408
+ | **spearman_cosine** | **0.835** |
409
+ | pearson_manhattan | 0.8028 |
410
+ | spearman_manhattan | 0.8049 |
411
+ | pearson_euclidean | 0.8047 |
412
+ | spearman_euclidean | 0.8064 |
413
+ | pearson_dot | 0.6172 |
414
+ | spearman_dot | 0.6177 |
415
+ | pearson_max | 0.8201 |
416
+ | spearman_max | 0.835 |
417
+
418
+ <!--
419
+ ## Bias, Risks and Limitations
420
+
421
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
422
+ -->
423
+
424
+ <!--
425
+ ### Recommendations
426
+
427
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
428
+ -->
429
+
430
+ ## Training Details
431
+
432
+ ### Training Dataset
433
+
434
+ #### sentence-transformers/all-nli
435
+
436
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
437
+ * Size: 557,850 training samples
438
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
439
+ * Approximate statistics based on the first 1000 samples:
440
+ | | anchor | positive | negative |
441
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
442
+ | type | string | string | string |
443
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
444
+ * Samples:
445
+ | anchor | positive | negative |
446
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
447
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
448
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
449
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
450
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
451
+ ```json
452
+ {
453
+ "loss": "MultipleNegativesRankingLoss",
454
+ "matryoshka_dims": [
455
+ 768,
456
+ 512,
457
+ 256,
458
+ 128,
459
+ 64
460
+ ],
461
+ "matryoshka_weights": [
462
+ 1,
463
+ 1,
464
+ 1,
465
+ 1,
466
+ 1
467
+ ],
468
+ "n_dims_per_step": -1
469
+ }
470
+ ```
471
+
472
+ ### Evaluation Dataset
473
+
474
+ #### sentence-transformers/all-nli
475
+
476
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
477
+ * Size: 6,584 evaluation samples
478
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
479
+ * Approximate statistics based on the first 1000 samples:
480
+ | | anchor | positive | negative |
481
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
482
+ | type | string | string | string |
483
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> |
484
+ * Samples:
485
+ | anchor | positive | negative |
486
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
487
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
488
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
489
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
490
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
491
+ ```json
492
+ {
493
+ "loss": "MultipleNegativesRankingLoss",
494
+ "matryoshka_dims": [
495
+ 768,
496
+ 512,
497
+ 256,
498
+ 128,
499
+ 64
500
+ ],
501
+ "matryoshka_weights": [
502
+ 1,
503
+ 1,
504
+ 1,
505
+ 1,
506
+ 1
507
+ ],
508
+ "n_dims_per_step": -1
509
+ }
510
+ ```
511
+
512
+ ### Training Hyperparameters
513
+ #### Non-Default Hyperparameters
514
+
515
+ - `eval_strategy`: steps
516
+ - `per_device_train_batch_size`: 256
517
+ - `per_device_eval_batch_size`: 256
518
+ - `num_train_epochs`: 1
519
+ - `warmup_ratio`: 0.1
520
+ - `bf16`: True
521
+ - `batch_sampler`: no_duplicates
522
+
523
+ #### All Hyperparameters
524
+ <details><summary>Click to expand</summary>
525
+
526
+ - `overwrite_output_dir`: False
527
+ - `do_predict`: False
528
+ - `eval_strategy`: steps
529
+ - `prediction_loss_only`: True
530
+ - `per_device_train_batch_size`: 256
531
+ - `per_device_eval_batch_size`: 256
532
+ - `per_gpu_train_batch_size`: None
533
+ - `per_gpu_eval_batch_size`: None
534
+ - `gradient_accumulation_steps`: 1
535
+ - `eval_accumulation_steps`: None
536
+ - `learning_rate`: 5e-05
537
+ - `weight_decay`: 0.0
538
+ - `adam_beta1`: 0.9
539
+ - `adam_beta2`: 0.999
540
+ - `adam_epsilon`: 1e-08
541
+ - `max_grad_norm`: 1.0
542
+ - `num_train_epochs`: 1
543
+ - `max_steps`: -1
544
+ - `lr_scheduler_type`: linear
545
+ - `lr_scheduler_kwargs`: {}
546
+ - `warmup_ratio`: 0.1
547
+ - `warmup_steps`: 0
548
+ - `log_level`: passive
549
+ - `log_level_replica`: warning
550
+ - `log_on_each_node`: True
551
+ - `logging_nan_inf_filter`: True
552
+ - `save_safetensors`: True
553
+ - `save_on_each_node`: False
554
+ - `save_only_model`: False
555
+ - `restore_callback_states_from_checkpoint`: False
556
+ - `no_cuda`: False
557
+ - `use_cpu`: False
558
+ - `use_mps_device`: False
559
+ - `seed`: 42
560
+ - `data_seed`: None
561
+ - `jit_mode_eval`: False
562
+ - `use_ipex`: False
563
+ - `bf16`: True
564
+ - `fp16`: False
565
+ - `fp16_opt_level`: O1
566
+ - `half_precision_backend`: auto
567
+ - `bf16_full_eval`: False
568
+ - `fp16_full_eval`: False
569
+ - `tf32`: None
570
+ - `local_rank`: 0
571
+ - `ddp_backend`: None
572
+ - `tpu_num_cores`: None
573
+ - `tpu_metrics_debug`: False
574
+ - `debug`: []
575
+ - `dataloader_drop_last`: False
576
+ - `dataloader_num_workers`: 0
577
+ - `dataloader_prefetch_factor`: None
578
+ - `past_index`: -1
579
+ - `disable_tqdm`: False
580
+ - `remove_unused_columns`: True
581
+ - `label_names`: None
582
+ - `load_best_model_at_end`: False
583
+ - `ignore_data_skip`: False
584
+ - `fsdp`: []
585
+ - `fsdp_min_num_params`: 0
586
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
587
+ - `fsdp_transformer_layer_cls_to_wrap`: None
588
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
589
+ - `deepspeed`: None
590
+ - `label_smoothing_factor`: 0.0
591
+ - `optim`: adamw_torch
592
+ - `optim_args`: None
593
+ - `adafactor`: False
594
+ - `group_by_length`: False
595
+ - `length_column_name`: length
596
+ - `ddp_find_unused_parameters`: None
597
+ - `ddp_bucket_cap_mb`: None
598
+ - `ddp_broadcast_buffers`: False
599
+ - `dataloader_pin_memory`: True
600
+ - `dataloader_persistent_workers`: False
601
+ - `skip_memory_metrics`: True
602
+ - `use_legacy_prediction_loop`: False
603
+ - `push_to_hub`: False
604
+ - `resume_from_checkpoint`: None
605
+ - `hub_model_id`: None
606
+ - `hub_strategy`: every_save
607
+ - `hub_private_repo`: False
608
+ - `hub_always_push`: False
609
+ - `gradient_checkpointing`: False
610
+ - `gradient_checkpointing_kwargs`: None
611
+ - `include_inputs_for_metrics`: False
612
+ - `eval_do_concat_batches`: True
613
+ - `fp16_backend`: auto
614
+ - `push_to_hub_model_id`: None
615
+ - `push_to_hub_organization`: None
616
+ - `mp_parameters`:
617
+ - `auto_find_batch_size`: False
618
+ - `full_determinism`: False
619
+ - `torchdynamo`: None
620
+ - `ray_scope`: last
621
+ - `ddp_timeout`: 1800
622
+ - `torch_compile`: False
623
+ - `torch_compile_backend`: None
624
+ - `torch_compile_mode`: None
625
+ - `dispatch_batches`: None
626
+ - `split_batches`: None
627
+ - `include_tokens_per_second`: False
628
+ - `include_num_input_tokens_seen`: False
629
+ - `neftune_noise_alpha`: None
630
+ - `optim_target_modules`: None
631
+ - `batch_eval_metrics`: False
632
+ - `batch_sampler`: no_duplicates
633
+ - `multi_dataset_batch_sampler`: proportional
634
+
635
+ </details>
636
+
637
+ ### Training Logs
638
+ | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine |
639
+ |:------:|:----:|:-------------:|:------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|
640
+ | 0.0459 | 100 | 19.459 | 8.2665 | 0.7796 | 0.8046 | 0.8114 | 0.8082 | 0.7996 |
641
+ | 0.0917 | 200 | 11.0035 | 7.6606 | 0.7696 | 0.7971 | 0.8083 | 0.7987 | 0.7933 |
642
+ | 0.1376 | 300 | 9.7634 | 6.4912 | 0.7992 | 0.8126 | 0.8190 | 0.8062 | 0.8127 |
643
+ | 0.1835 | 400 | 9.1103 | 5.9960 | 0.8081 | 0.8229 | 0.8263 | 0.8136 | 0.8224 |
644
+ | 0.2294 | 500 | 8.7099 | 5.9388 | 0.7984 | 0.8138 | 0.8189 | 0.8021 | 0.8166 |
645
+ | 0.2752 | 600 | 8.1215 | 5.6457 | 0.7963 | 0.8104 | 0.8149 | 0.8057 | 0.8121 |
646
+ | 0.3211 | 700 | 7.7441 | 5.4632 | 0.7937 | 0.8153 | 0.8199 | 0.8119 | 0.8150 |
647
+ | 0.3670 | 800 | 7.4849 | 5.1815 | 0.8076 | 0.8208 | 0.8238 | 0.8152 | 0.8172 |
648
+ | 0.4128 | 900 | 7.1386 | 5.1419 | 0.8035 | 0.8181 | 0.8235 | 0.8139 | 0.8189 |
649
+ | 0.4587 | 1000 | 6.839 | 5.1548 | 0.7943 | 0.8118 | 0.8172 | 0.8054 | 0.8153 |
650
+ | 0.5046 | 1100 | 6.6597 | 5.1015 | 0.7895 | 0.8066 | 0.8119 | 0.8059 | 0.8063 |
651
+ | 0.5505 | 1200 | 6.7172 | 5.3707 | 0.7753 | 0.7987 | 0.8068 | 0.7989 | 0.8014 |
652
+ | 0.5963 | 1300 | 6.6514 | 4.9368 | 0.7904 | 0.8086 | 0.8139 | 0.8051 | 0.8083 |
653
+ | 0.6422 | 1400 | 6.5573 | 5.0196 | 0.7882 | 0.8066 | 0.8128 | 0.8035 | 0.8091 |
654
+ | 0.6881 | 1500 | 6.7596 | 4.9381 | 0.7960 | 0.8120 | 0.8169 | 0.8058 | 0.8140 |
655
+ | 0.7339 | 1600 | 6.2686 | 4.4018 | 0.8136 | 0.8245 | 0.8268 | 0.8160 | 0.8244 |
656
+ | 0.7798 | 1700 | 3.4607 | 3.8397 | 0.8415 | 0.8466 | 0.8502 | 0.8345 | 0.8503 |
657
+ | 0.8257 | 1800 | 2.6912 | 3.7914 | 0.8415 | 0.8459 | 0.8493 | 0.8350 | 0.8488 |
658
+ | 0.8716 | 1900 | 2.4958 | 3.7752 | 0.8402 | 0.8450 | 0.8484 | 0.8340 | 0.8478 |
659
+ | 0.9174 | 2000 | 2.3413 | 3.7997 | 0.8410 | 0.8459 | 0.8490 | 0.8350 | 0.8486 |
660
+
661
+
662
+ ### Framework Versions
663
+ - Python: 3.10.12
664
+ - Sentence Transformers: 3.0.0
665
+ - Transformers: 4.41.1
666
+ - PyTorch: 2.3.0+cu121
667
+ - Accelerate: 0.30.1
668
+ - Datasets: 2.19.2
669
+ - Tokenizers: 0.19.1
670
+
671
+ ## Citation
672
+
673
+ ### BibTeX
674
+
675
+ #### Sentence Transformers
676
+ ```bibtex
677
+ @inproceedings{reimers-2019-sentence-bert,
678
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
679
+ author = "Reimers, Nils and Gurevych, Iryna",
680
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
681
+ month = "11",
682
+ year = "2019",
683
+ publisher = "Association for Computational Linguistics",
684
+ url = "https://arxiv.org/abs/1908.10084",
685
+ }
686
+ ```
687
+
688
+ #### MatryoshkaLoss
689
+ ```bibtex
690
+ @misc{kusupati2024matryoshka,
691
+ title={Matryoshka Representation Learning},
692
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
693
+ year={2024},
694
+ eprint={2205.13147},
695
+ archivePrefix={arXiv},
696
+ primaryClass={cs.LG}
697
+ }
698
+ ```
699
+
700
+ #### MultipleNegativesRankingLoss
701
+ ```bibtex
702
+ @misc{henderson2017efficient,
703
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
704
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
705
+ year={2017},
706
+ eprint={1705.00652},
707
+ archivePrefix={arXiv},
708
+ primaryClass={cs.CL}
709
+ }
710
+ ```
711
+
712
+ <!--
713
+ ## Glossary
714
+
715
+ *Clearly define terms in order to be accessible across audiences.*
716
+ -->
717
+
718
+ <!--
719
+ ## Model Card Authors
720
+
721
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
722
+ -->
723
+
724
+ <!--
725
+ ## Model Card Contact
726
+
727
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
728
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/MyDrive/matryoshka_nli_2_distilroberta-base_256_bs_1_e/checkpoint-2000",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.41.1",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0332e4ce6f3f1e288667ccdabc510285f8de92ee284c111595c123c5188178b1
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "tokenizer_class": "RobertaTokenizer",
60
+ "trim_offsets": true,
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff