--- tags: - generated_from_trainer - code - coding model-index: - name: FalCoder results: [] license: apache-2.0 language: - code thumbnail: https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png datasets: - HuggingFaceH4/CodeAlpaca_20K pipeline_tag: text-generation ---
falcoder logo
# LlaMa 2 CoderπŸ¦™πŸ‘©β€πŸ’» **LlaMa-2 7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library. ## Model description 🧠 [Llama-2](https://huggingface.co/tiiuae/falcon-7b) ## Training and evaluation data πŸ“š [CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K): contains 20K instruction-following data used for fine-tuning the Code Alpaca model. ### Training hyperparameters βš™ TBA ### Training results πŸ—’οΈ | Step | Training Loss | Validation Loss | |------|---------------|-----------------| | 100 | 0.798500 | 0.767996 | | 200 | 0.725900 | 0.749880 | | 300 | 0.669100 | 0.748029 | | 400 | 0.687300 | 0.742342 | | 500 | 0.579900 | 0.736735 | ### Example of usage πŸ‘©β€πŸ’» ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer model_id = "mrm8488/falcoder-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda") def generate( instruction, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs ): prompt = instruction + "\n### Solution:\n" print(prompt) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Solution:")[1].lstrip("\n") instruction = "Design a class for representing a person in Python." print(generate(instruction)) ``` ### Citation