mrm8488 commited on
Commit
7e35bef
1 Parent(s): 8a1309a

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:1K<n<10K
9
+ - loss:MatryoshkaLoss
10
+ - loss:CoSENTLoss
11
+ base_model: intfloat/multilingual-e5-large
12
+ metrics:
13
+ - pearson_cosine
14
+ - spearman_cosine
15
+ - pearson_manhattan
16
+ - spearman_manhattan
17
+ - pearson_euclidean
18
+ - spearman_euclidean
19
+ - pearson_dot
20
+ - spearman_dot
21
+ - pearson_max
22
+ - spearman_max
23
+ widget:
24
+ - source_sentence: El hombre captura una pelota
25
+ sentences:
26
+ - Un hombre lanza una pelota en el aire.
27
+ - Un hombre está acompañando a una mujer en el camino.
28
+ - Dos mujeres están cantando una hermosa canción.
29
+ - source_sentence: La mujer está cortando papas.
30
+ sentences:
31
+ - Una mujer está cortando patatas.
32
+ - Los patos blancos se encuentran parados en el suelo.
33
+ - Hay una banda tocando en el escenario principal.
34
+ - source_sentence: Un hombre está buscando algo.
35
+ sentences:
36
+ - En un mercado de granjeros, se encuentra un hombre.
37
+ - Romney filmó en una reunión privada de financiadores
38
+ - Dos perros de color negro están jugando en la hierba.
39
+ - source_sentence: Un hombre saltando la cuerda.
40
+ sentences:
41
+ - Un hombre está saltando la cuerda.
42
+ - La capital de Siria fue golpeada por dos explosiones
43
+ - Los gatitos están comiendo de los platos.
44
+ - source_sentence: El avión está tocando tierra.
45
+ sentences:
46
+ - El avión animado se encuentra en proceso de aterrizaje.
47
+ - Un pequeño niño montado en un columpio en el parque.
48
+ - Una persona de sexo femenino está cortando una cebolla.
49
+ pipeline_tag: sentence-similarity
50
+ model-index:
51
+ - name: SentenceTransformer based on intfloat/multilingual-e5-large
52
+ results:
53
+ - task:
54
+ type: semantic-similarity
55
+ name: Semantic Similarity
56
+ dataset:
57
+ name: sts dev 768
58
+ type: sts-dev-768
59
+ metrics:
60
+ - type: pearson_cosine
61
+ value: 0.8382359637067547
62
+ name: Pearson Cosine
63
+ - type: spearman_cosine
64
+ value: 0.8429605562993187
65
+ name: Spearman Cosine
66
+ - type: pearson_manhattan
67
+ value: 0.8336600898033378
68
+ name: Pearson Manhattan
69
+ - type: spearman_manhattan
70
+ value: 0.8448900621318144
71
+ name: Spearman Manhattan
72
+ - type: pearson_euclidean
73
+ value: 0.8328580183902631
74
+ name: Pearson Euclidean
75
+ - type: spearman_euclidean
76
+ value: 0.8441561677427524
77
+ name: Spearman Euclidean
78
+ - type: pearson_dot
79
+ value: 0.8287262441829462
80
+ name: Pearson Dot
81
+ - type: spearman_dot
82
+ value: 0.8322746204974042
83
+ name: Spearman Dot
84
+ - type: pearson_max
85
+ value: 0.8382359637067547
86
+ name: Pearson Max
87
+ - type: spearman_max
88
+ value: 0.8448900621318144
89
+ name: Spearman Max
90
+ - task:
91
+ type: semantic-similarity
92
+ name: Semantic Similarity
93
+ dataset:
94
+ name: sts dev 512
95
+ type: sts-dev-512
96
+ metrics:
97
+ - type: pearson_cosine
98
+ value: 0.8334610747047482
99
+ name: Pearson Cosine
100
+ - type: spearman_cosine
101
+ value: 0.8405630189692351
102
+ name: Spearman Cosine
103
+ - type: pearson_manhattan
104
+ value: 0.8316848819512679
105
+ name: Pearson Manhattan
106
+ - type: spearman_manhattan
107
+ value: 0.8426142019940397
108
+ name: Spearman Manhattan
109
+ - type: pearson_euclidean
110
+ value: 0.8305903222472721
111
+ name: Pearson Euclidean
112
+ - type: spearman_euclidean
113
+ value: 0.8415256700272777
114
+ name: Spearman Euclidean
115
+ - type: pearson_dot
116
+ value: 0.8172993617433827
117
+ name: Pearson Dot
118
+ - type: spearman_dot
119
+ value: 0.823043401157181
120
+ name: Spearman Dot
121
+ - type: pearson_max
122
+ value: 0.8334610747047482
123
+ name: Pearson Max
124
+ - type: spearman_max
125
+ value: 0.8426142019940397
126
+ name: Spearman Max
127
+ - task:
128
+ type: semantic-similarity
129
+ name: Semantic Similarity
130
+ dataset:
131
+ name: sts dev 256
132
+ type: sts-dev-256
133
+ metrics:
134
+ - type: pearson_cosine
135
+ value: 0.8240056098321313
136
+ name: Pearson Cosine
137
+ - type: spearman_cosine
138
+ value: 0.8355774999921849
139
+ name: Spearman Cosine
140
+ - type: pearson_manhattan
141
+ value: 0.8261458415991961
142
+ name: Pearson Manhattan
143
+ - type: spearman_manhattan
144
+ value: 0.8355100986320139
145
+ name: Spearman Manhattan
146
+ - type: pearson_euclidean
147
+ value: 0.825647934422587
148
+ name: Pearson Euclidean
149
+ - type: spearman_euclidean
150
+ value: 0.8362336344962497
151
+ name: Spearman Euclidean
152
+ - type: pearson_dot
153
+ value: 0.7924886689283153
154
+ name: Pearson Dot
155
+ - type: spearman_dot
156
+ value: 0.7992788592975302
157
+ name: Spearman Dot
158
+ - type: pearson_max
159
+ value: 0.8261458415991961
160
+ name: Pearson Max
161
+ - type: spearman_max
162
+ value: 0.8362336344962497
163
+ name: Spearman Max
164
+ - task:
165
+ type: semantic-similarity
166
+ name: Semantic Similarity
167
+ dataset:
168
+ name: sts dev 128
169
+ type: sts-dev-128
170
+ metrics:
171
+ - type: pearson_cosine
172
+ value: 0.8098656853945027
173
+ name: Pearson Cosine
174
+ - type: spearman_cosine
175
+ value: 0.8304511476467773
176
+ name: Spearman Cosine
177
+ - type: pearson_manhattan
178
+ value: 0.8208946291392102
179
+ name: Pearson Manhattan
180
+ - type: spearman_manhattan
181
+ value: 0.8308359029901535
182
+ name: Spearman Manhattan
183
+ - type: pearson_euclidean
184
+ value: 0.8195023110971954
185
+ name: Pearson Euclidean
186
+ - type: spearman_euclidean
187
+ value: 0.8302481276550623
188
+ name: Spearman Euclidean
189
+ - type: pearson_dot
190
+ value: 0.7412744037070784
191
+ name: Pearson Dot
192
+ - type: spearman_dot
193
+ value: 0.7489986968697009
194
+ name: Spearman Dot
195
+ - type: pearson_max
196
+ value: 0.8208946291392102
197
+ name: Pearson Max
198
+ - type: spearman_max
199
+ value: 0.8308359029901535
200
+ name: Spearman Max
201
+ - task:
202
+ type: semantic-similarity
203
+ name: Semantic Similarity
204
+ dataset:
205
+ name: sts dev 64
206
+ type: sts-dev-64
207
+ metrics:
208
+ - type: pearson_cosine
209
+ value: 0.7777717898212414
210
+ name: Pearson Cosine
211
+ - type: spearman_cosine
212
+ value: 0.8152005256760807
213
+ name: Spearman Cosine
214
+ - type: pearson_manhattan
215
+ value: 0.8007095698339157
216
+ name: Pearson Manhattan
217
+ - type: spearman_manhattan
218
+ value: 0.8116493253806699
219
+ name: Spearman Manhattan
220
+ - type: pearson_euclidean
221
+ value: 0.8000905317852872
222
+ name: Pearson Euclidean
223
+ - type: spearman_euclidean
224
+ value: 0.8110794468804238
225
+ name: Spearman Euclidean
226
+ - type: pearson_dot
227
+ value: 0.6540905690432955
228
+ name: Pearson Dot
229
+ - type: spearman_dot
230
+ value: 0.6589924104221199
231
+ name: Spearman Dot
232
+ - type: pearson_max
233
+ value: 0.8007095698339157
234
+ name: Pearson Max
235
+ - type: spearman_max
236
+ value: 0.8152005256760807
237
+ name: Spearman Max
238
+ - task:
239
+ type: semantic-similarity
240
+ name: Semantic Similarity
241
+ dataset:
242
+ name: sts dev 32
243
+ type: sts-dev-32
244
+ metrics:
245
+ - type: pearson_cosine
246
+ value: 0.7276908730898617
247
+ name: Pearson Cosine
248
+ - type: spearman_cosine
249
+ value: 0.7805691037554072
250
+ name: Spearman Cosine
251
+ - type: pearson_manhattan
252
+ value: 0.7659952363354546
253
+ name: Pearson Manhattan
254
+ - type: spearman_manhattan
255
+ value: 0.7751944660837697
256
+ name: Spearman Manhattan
257
+ - type: pearson_euclidean
258
+ value: 0.7674462214503804
259
+ name: Pearson Euclidean
260
+ - type: spearman_euclidean
261
+ value: 0.7773298298599879
262
+ name: Spearman Euclidean
263
+ - type: pearson_dot
264
+ value: 0.5395044219284906
265
+ name: Pearson Dot
266
+ - type: spearman_dot
267
+ value: 0.5341543426421572
268
+ name: Spearman Dot
269
+ - type: pearson_max
270
+ value: 0.7674462214503804
271
+ name: Pearson Max
272
+ - type: spearman_max
273
+ value: 0.7805691037554072
274
+ name: Spearman Max
275
+ - task:
276
+ type: semantic-similarity
277
+ name: Semantic Similarity
278
+ dataset:
279
+ name: sts dev 16
280
+ type: sts-dev-16
281
+ metrics:
282
+ - type: pearson_cosine
283
+ value: 0.6737235484120327
284
+ name: Pearson Cosine
285
+ - type: spearman_cosine
286
+ value: 0.7425360948217027
287
+ name: Spearman Cosine
288
+ - type: pearson_manhattan
289
+ value: 0.7187007732867645
290
+ name: Pearson Manhattan
291
+ - type: spearman_manhattan
292
+ value: 0.7279621825071231
293
+ name: Spearman Manhattan
294
+ - type: pearson_euclidean
295
+ value: 0.7234911258158329
296
+ name: Pearson Euclidean
297
+ - type: spearman_euclidean
298
+ value: 0.7374355146279606
299
+ name: Spearman Euclidean
300
+ - type: pearson_dot
301
+ value: 0.44701957007430754
302
+ name: Pearson Dot
303
+ - type: spearman_dot
304
+ value: 0.44243975098384164
305
+ name: Spearman Dot
306
+ - type: pearson_max
307
+ value: 0.7234911258158329
308
+ name: Pearson Max
309
+ - type: spearman_max
310
+ value: 0.7425360948217027
311
+ name: Spearman Max
312
+ - task:
313
+ type: semantic-similarity
314
+ name: Semantic Similarity
315
+ dataset:
316
+ name: sts test 768
317
+ type: sts-test-768
318
+ metrics:
319
+ - type: pearson_cosine
320
+ value: 0.8637130740455785
321
+ name: Pearson Cosine
322
+ - type: spearman_cosine
323
+ value: 0.8774757245850818
324
+ name: Spearman Cosine
325
+ - type: pearson_manhattan
326
+ value: 0.8739327947840198
327
+ name: Pearson Manhattan
328
+ - type: spearman_manhattan
329
+ value: 0.8771247494149252
330
+ name: Spearman Manhattan
331
+ - type: pearson_euclidean
332
+ value: 0.8742964420051067
333
+ name: Pearson Euclidean
334
+ - type: spearman_euclidean
335
+ value: 0.8774039769000851
336
+ name: Spearman Euclidean
337
+ - type: pearson_dot
338
+ value: 0.8587248460103846
339
+ name: Pearson Dot
340
+ - type: spearman_dot
341
+ value: 0.8692624735733635
342
+ name: Spearman Dot
343
+ - type: pearson_max
344
+ value: 0.8742964420051067
345
+ name: Pearson Max
346
+ - type: spearman_max
347
+ value: 0.8774757245850818
348
+ name: Spearman Max
349
+ - task:
350
+ type: semantic-similarity
351
+ name: Semantic Similarity
352
+ dataset:
353
+ name: sts test 512
354
+ type: sts-test-512
355
+ metrics:
356
+ - type: pearson_cosine
357
+ value: 0.8608902316971913
358
+ name: Pearson Cosine
359
+ - type: spearman_cosine
360
+ value: 0.8761454408181157
361
+ name: Spearman Cosine
362
+ - type: pearson_manhattan
363
+ value: 0.8723366100239835
364
+ name: Pearson Manhattan
365
+ - type: spearman_manhattan
366
+ value: 0.8755119028724399
367
+ name: Spearman Manhattan
368
+ - type: pearson_euclidean
369
+ value: 0.8727143818945785
370
+ name: Pearson Euclidean
371
+ - type: spearman_euclidean
372
+ value: 0.8758699632438892
373
+ name: Spearman Euclidean
374
+ - type: pearson_dot
375
+ value: 0.8498181878456328
376
+ name: Pearson Dot
377
+ - type: spearman_dot
378
+ value: 0.8568165420931783
379
+ name: Spearman Dot
380
+ - type: pearson_max
381
+ value: 0.8727143818945785
382
+ name: Pearson Max
383
+ - type: spearman_max
384
+ value: 0.8761454408181157
385
+ name: Spearman Max
386
+ - task:
387
+ type: semantic-similarity
388
+ name: Semantic Similarity
389
+ dataset:
390
+ name: sts test 256
391
+ type: sts-test-256
392
+ metrics:
393
+ - type: pearson_cosine
394
+ value: 0.8546354043013908
395
+ name: Pearson Cosine
396
+ - type: spearman_cosine
397
+ value: 0.871536658256446
398
+ name: Spearman Cosine
399
+ - type: pearson_manhattan
400
+ value: 0.8697716394077537
401
+ name: Pearson Manhattan
402
+ - type: spearman_manhattan
403
+ value: 0.8737030599161743
404
+ name: Spearman Manhattan
405
+ - type: pearson_euclidean
406
+ value: 0.86989853825415
407
+ name: Pearson Euclidean
408
+ - type: spearman_euclidean
409
+ value: 0.8736845554686979
410
+ name: Spearman Euclidean
411
+ - type: pearson_dot
412
+ value: 0.8131428680674924
413
+ name: Pearson Dot
414
+ - type: spearman_dot
415
+ value: 0.8076436370339797
416
+ name: Spearman Dot
417
+ - type: pearson_max
418
+ value: 0.86989853825415
419
+ name: Pearson Max
420
+ - type: spearman_max
421
+ value: 0.8737030599161743
422
+ name: Spearman Max
423
+ - task:
424
+ type: semantic-similarity
425
+ name: Semantic Similarity
426
+ dataset:
427
+ name: sts test 128
428
+ type: sts-test-128
429
+ metrics:
430
+ - type: pearson_cosine
431
+ value: 0.8387977115140051
432
+ name: Pearson Cosine
433
+ - type: spearman_cosine
434
+ value: 0.8645489592292456
435
+ name: Spearman Cosine
436
+ - type: pearson_manhattan
437
+ value: 0.8611375341227384
438
+ name: Pearson Manhattan
439
+ - type: spearman_manhattan
440
+ value: 0.8667215229295422
441
+ name: Spearman Manhattan
442
+ - type: pearson_euclidean
443
+ value: 0.862154474303328
444
+ name: Pearson Euclidean
445
+ - type: spearman_euclidean
446
+ value: 0.8680162798983022
447
+ name: Spearman Euclidean
448
+ - type: pearson_dot
449
+ value: 0.7492475609746636
450
+ name: Pearson Dot
451
+ - type: spearman_dot
452
+ value: 0.7363955675375832
453
+ name: Spearman Dot
454
+ - type: pearson_max
455
+ value: 0.862154474303328
456
+ name: Pearson Max
457
+ - type: spearman_max
458
+ value: 0.8680162798983022
459
+ name: Spearman Max
460
+ - task:
461
+ type: semantic-similarity
462
+ name: Semantic Similarity
463
+ dataset:
464
+ name: sts test 64
465
+ type: sts-test-64
466
+ metrics:
467
+ - type: pearson_cosine
468
+ value: 0.8168102869303625
469
+ name: Pearson Cosine
470
+ - type: spearman_cosine
471
+ value: 0.8585329796388539
472
+ name: Spearman Cosine
473
+ - type: pearson_manhattan
474
+ value: 0.8518107264951738
475
+ name: Pearson Manhattan
476
+ - type: spearman_manhattan
477
+ value: 0.8606717941407515
478
+ name: Spearman Manhattan
479
+ - type: pearson_euclidean
480
+ value: 0.8533959511853835
481
+ name: Pearson Euclidean
482
+ - type: spearman_euclidean
483
+ value: 0.8623753165991692
484
+ name: Spearman Euclidean
485
+ - type: pearson_dot
486
+ value: 0.6646337116783656
487
+ name: Pearson Dot
488
+ - type: spearman_dot
489
+ value: 0.6473141838302237
490
+ name: Spearman Dot
491
+ - type: pearson_max
492
+ value: 0.8533959511853835
493
+ name: Pearson Max
494
+ - type: spearman_max
495
+ value: 0.8623753165991692
496
+ name: Spearman Max
497
+ - task:
498
+ type: semantic-similarity
499
+ name: Semantic Similarity
500
+ dataset:
501
+ name: sts test 32
502
+ type: sts-test-32
503
+ metrics:
504
+ - type: pearson_cosine
505
+ value: 0.7813945227753345
506
+ name: Pearson Cosine
507
+ - type: spearman_cosine
508
+ value: 0.8424823964509079
509
+ name: Spearman Cosine
510
+ - type: pearson_manhattan
511
+ value: 0.8315336527432531
512
+ name: Pearson Manhattan
513
+ - type: spearman_manhattan
514
+ value: 0.8431756901550471
515
+ name: Spearman Manhattan
516
+ - type: pearson_euclidean
517
+ value: 0.8345328653107531
518
+ name: Pearson Euclidean
519
+ - type: spearman_euclidean
520
+ value: 0.8466076672836096
521
+ name: Spearman Euclidean
522
+ - type: pearson_dot
523
+ value: 0.5520860449837447
524
+ name: Pearson Dot
525
+ - type: spearman_dot
526
+ value: 0.5319238671245338
527
+ name: Spearman Dot
528
+ - type: pearson_max
529
+ value: 0.8345328653107531
530
+ name: Pearson Max
531
+ - type: spearman_max
532
+ value: 0.8466076672836096
533
+ name: Spearman Max
534
+ - task:
535
+ type: semantic-similarity
536
+ name: Semantic Similarity
537
+ dataset:
538
+ name: sts test 16
539
+ type: sts-test-16
540
+ metrics:
541
+ - type: pearson_cosine
542
+ value: 0.7198004009567176
543
+ name: Pearson Cosine
544
+ - type: spearman_cosine
545
+ value: 0.8072120165730962
546
+ name: Spearman Cosine
547
+ - type: pearson_manhattan
548
+ value: 0.7805727606105963
549
+ name: Pearson Manhattan
550
+ - type: spearman_manhattan
551
+ value: 0.7997833060148871
552
+ name: Spearman Manhattan
553
+ - type: pearson_euclidean
554
+ value: 0.7879106231813758
555
+ name: Pearson Euclidean
556
+ - type: spearman_euclidean
557
+ value: 0.8090073332632988
558
+ name: Spearman Euclidean
559
+ - type: pearson_dot
560
+ value: 0.44957276876149327
561
+ name: Pearson Dot
562
+ - type: spearman_dot
563
+ value: 0.4411623904572447
564
+ name: Spearman Dot
565
+ - type: pearson_max
566
+ value: 0.7879106231813758
567
+ name: Pearson Max
568
+ - type: spearman_max
569
+ value: 0.8090073332632988
570
+ name: Spearman Max
571
+ ---
572
+
573
+ # SentenceTransformer based on intfloat/multilingual-e5-large
574
+
575
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
576
+
577
+ ## Model Details
578
+
579
+ ### Model Description
580
+ - **Model Type:** Sentence Transformer
581
+ - **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
582
+ - **Maximum Sequence Length:** 512 tokens
583
+ - **Output Dimensionality:** 1024 tokens
584
+ - **Similarity Function:** Cosine Similarity
585
+ - **Training Dataset:**
586
+ - clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
587
+ <!-- - **Language:** Unknown -->
588
+ <!-- - **License:** Unknown -->
589
+
590
+ ### Model Sources
591
+
592
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
593
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
594
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
595
+
596
+ ### Full Model Architecture
597
+
598
+ ```
599
+ SentenceTransformer(
600
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
601
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
602
+ (2): Normalize()
603
+ )
604
+ ```
605
+
606
+ ## Usage
607
+
608
+ ### Direct Usage (Sentence Transformers)
609
+
610
+ First install the Sentence Transformers library:
611
+
612
+ ```bash
613
+ pip install -U sentence-transformers
614
+ ```
615
+
616
+ Then you can load this model and run inference.
617
+ ```python
618
+ from sentence_transformers import SentenceTransformer
619
+
620
+ # Download from the 🤗 Hub
621
+ model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-16-5e")
622
+ # Run inference
623
+ sentences = [
624
+ 'El avión está tocando tierra.',
625
+ 'El avión animado se encuentra en proceso de aterrizaje.',
626
+ 'Un pequeño niño montado en un columpio en el parque.',
627
+ ]
628
+ embeddings = model.encode(sentences)
629
+ print(embeddings.shape)
630
+ # [3, 1024]
631
+
632
+ # Get the similarity scores for the embeddings
633
+ similarities = model.similarity(embeddings, embeddings)
634
+ print(similarities.shape)
635
+ # [3, 3]
636
+ ```
637
+
638
+ <!--
639
+ ### Direct Usage (Transformers)
640
+
641
+ <details><summary>Click to see the direct usage in Transformers</summary>
642
+
643
+ </details>
644
+ -->
645
+
646
+ <!--
647
+ ### Downstream Usage (Sentence Transformers)
648
+
649
+ You can finetune this model on your own dataset.
650
+
651
+ <details><summary>Click to expand</summary>
652
+
653
+ </details>
654
+ -->
655
+
656
+ <!--
657
+ ### Out-of-Scope Use
658
+
659
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
660
+ -->
661
+
662
+ ## Evaluation
663
+
664
+ ### Metrics
665
+
666
+ #### Semantic Similarity
667
+ * Dataset: `sts-dev-768`
668
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
669
+
670
+ | Metric | Value |
671
+ |:--------------------|:----------|
672
+ | pearson_cosine | 0.8382 |
673
+ | **spearman_cosine** | **0.843** |
674
+ | pearson_manhattan | 0.8337 |
675
+ | spearman_manhattan | 0.8449 |
676
+ | pearson_euclidean | 0.8329 |
677
+ | spearman_euclidean | 0.8442 |
678
+ | pearson_dot | 0.8287 |
679
+ | spearman_dot | 0.8323 |
680
+ | pearson_max | 0.8382 |
681
+ | spearman_max | 0.8449 |
682
+
683
+ #### Semantic Similarity
684
+ * Dataset: `sts-dev-512`
685
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
686
+
687
+ | Metric | Value |
688
+ |:--------------------|:-----------|
689
+ | pearson_cosine | 0.8335 |
690
+ | **spearman_cosine** | **0.8406** |
691
+ | pearson_manhattan | 0.8317 |
692
+ | spearman_manhattan | 0.8426 |
693
+ | pearson_euclidean | 0.8306 |
694
+ | spearman_euclidean | 0.8415 |
695
+ | pearson_dot | 0.8173 |
696
+ | spearman_dot | 0.823 |
697
+ | pearson_max | 0.8335 |
698
+ | spearman_max | 0.8426 |
699
+
700
+ #### Semantic Similarity
701
+ * Dataset: `sts-dev-256`
702
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
703
+
704
+ | Metric | Value |
705
+ |:--------------------|:-----------|
706
+ | pearson_cosine | 0.824 |
707
+ | **spearman_cosine** | **0.8356** |
708
+ | pearson_manhattan | 0.8261 |
709
+ | spearman_manhattan | 0.8355 |
710
+ | pearson_euclidean | 0.8256 |
711
+ | spearman_euclidean | 0.8362 |
712
+ | pearson_dot | 0.7925 |
713
+ | spearman_dot | 0.7993 |
714
+ | pearson_max | 0.8261 |
715
+ | spearman_max | 0.8362 |
716
+
717
+ #### Semantic Similarity
718
+ * Dataset: `sts-dev-128`
719
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
720
+
721
+ | Metric | Value |
722
+ |:--------------------|:-----------|
723
+ | pearson_cosine | 0.8099 |
724
+ | **spearman_cosine** | **0.8305** |
725
+ | pearson_manhattan | 0.8209 |
726
+ | spearman_manhattan | 0.8308 |
727
+ | pearson_euclidean | 0.8195 |
728
+ | spearman_euclidean | 0.8302 |
729
+ | pearson_dot | 0.7413 |
730
+ | spearman_dot | 0.749 |
731
+ | pearson_max | 0.8209 |
732
+ | spearman_max | 0.8308 |
733
+
734
+ #### Semantic Similarity
735
+ * Dataset: `sts-dev-64`
736
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
737
+
738
+ | Metric | Value |
739
+ |:--------------------|:-----------|
740
+ | pearson_cosine | 0.7778 |
741
+ | **spearman_cosine** | **0.8152** |
742
+ | pearson_manhattan | 0.8007 |
743
+ | spearman_manhattan | 0.8116 |
744
+ | pearson_euclidean | 0.8001 |
745
+ | spearman_euclidean | 0.8111 |
746
+ | pearson_dot | 0.6541 |
747
+ | spearman_dot | 0.659 |
748
+ | pearson_max | 0.8007 |
749
+ | spearman_max | 0.8152 |
750
+
751
+ #### Semantic Similarity
752
+ * Dataset: `sts-dev-32`
753
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
754
+
755
+ | Metric | Value |
756
+ |:--------------------|:-----------|
757
+ | pearson_cosine | 0.7277 |
758
+ | **spearman_cosine** | **0.7806** |
759
+ | pearson_manhattan | 0.766 |
760
+ | spearman_manhattan | 0.7752 |
761
+ | pearson_euclidean | 0.7674 |
762
+ | spearman_euclidean | 0.7773 |
763
+ | pearson_dot | 0.5395 |
764
+ | spearman_dot | 0.5342 |
765
+ | pearson_max | 0.7674 |
766
+ | spearman_max | 0.7806 |
767
+
768
+ #### Semantic Similarity
769
+ * Dataset: `sts-dev-16`
770
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
771
+
772
+ | Metric | Value |
773
+ |:--------------------|:-----------|
774
+ | pearson_cosine | 0.6737 |
775
+ | **spearman_cosine** | **0.7425** |
776
+ | pearson_manhattan | 0.7187 |
777
+ | spearman_manhattan | 0.728 |
778
+ | pearson_euclidean | 0.7235 |
779
+ | spearman_euclidean | 0.7374 |
780
+ | pearson_dot | 0.447 |
781
+ | spearman_dot | 0.4424 |
782
+ | pearson_max | 0.7235 |
783
+ | spearman_max | 0.7425 |
784
+
785
+ #### Semantic Similarity
786
+ * Dataset: `sts-test-768`
787
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
788
+
789
+ | Metric | Value |
790
+ |:--------------------|:-----------|
791
+ | pearson_cosine | 0.8637 |
792
+ | **spearman_cosine** | **0.8775** |
793
+ | pearson_manhattan | 0.8739 |
794
+ | spearman_manhattan | 0.8771 |
795
+ | pearson_euclidean | 0.8743 |
796
+ | spearman_euclidean | 0.8774 |
797
+ | pearson_dot | 0.8587 |
798
+ | spearman_dot | 0.8693 |
799
+ | pearson_max | 0.8743 |
800
+ | spearman_max | 0.8775 |
801
+
802
+ #### Semantic Similarity
803
+ * Dataset: `sts-test-512`
804
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
805
+
806
+ | Metric | Value |
807
+ |:--------------------|:-----------|
808
+ | pearson_cosine | 0.8609 |
809
+ | **spearman_cosine** | **0.8761** |
810
+ | pearson_manhattan | 0.8723 |
811
+ | spearman_manhattan | 0.8755 |
812
+ | pearson_euclidean | 0.8727 |
813
+ | spearman_euclidean | 0.8759 |
814
+ | pearson_dot | 0.8498 |
815
+ | spearman_dot | 0.8568 |
816
+ | pearson_max | 0.8727 |
817
+ | spearman_max | 0.8761 |
818
+
819
+ #### Semantic Similarity
820
+ * Dataset: `sts-test-256`
821
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
822
+
823
+ | Metric | Value |
824
+ |:--------------------|:-----------|
825
+ | pearson_cosine | 0.8546 |
826
+ | **spearman_cosine** | **0.8715** |
827
+ | pearson_manhattan | 0.8698 |
828
+ | spearman_manhattan | 0.8737 |
829
+ | pearson_euclidean | 0.8699 |
830
+ | spearman_euclidean | 0.8737 |
831
+ | pearson_dot | 0.8131 |
832
+ | spearman_dot | 0.8076 |
833
+ | pearson_max | 0.8699 |
834
+ | spearman_max | 0.8737 |
835
+
836
+ #### Semantic Similarity
837
+ * Dataset: `sts-test-128`
838
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
839
+
840
+ | Metric | Value |
841
+ |:--------------------|:-----------|
842
+ | pearson_cosine | 0.8388 |
843
+ | **spearman_cosine** | **0.8645** |
844
+ | pearson_manhattan | 0.8611 |
845
+ | spearman_manhattan | 0.8667 |
846
+ | pearson_euclidean | 0.8622 |
847
+ | spearman_euclidean | 0.868 |
848
+ | pearson_dot | 0.7492 |
849
+ | spearman_dot | 0.7364 |
850
+ | pearson_max | 0.8622 |
851
+ | spearman_max | 0.868 |
852
+
853
+ #### Semantic Similarity
854
+ * Dataset: `sts-test-64`
855
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
856
+
857
+ | Metric | Value |
858
+ |:--------------------|:-----------|
859
+ | pearson_cosine | 0.8168 |
860
+ | **spearman_cosine** | **0.8585** |
861
+ | pearson_manhattan | 0.8518 |
862
+ | spearman_manhattan | 0.8607 |
863
+ | pearson_euclidean | 0.8534 |
864
+ | spearman_euclidean | 0.8624 |
865
+ | pearson_dot | 0.6646 |
866
+ | spearman_dot | 0.6473 |
867
+ | pearson_max | 0.8534 |
868
+ | spearman_max | 0.8624 |
869
+
870
+ #### Semantic Similarity
871
+ * Dataset: `sts-test-32`
872
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
873
+
874
+ | Metric | Value |
875
+ |:--------------------|:-----------|
876
+ | pearson_cosine | 0.7814 |
877
+ | **spearman_cosine** | **0.8425** |
878
+ | pearson_manhattan | 0.8315 |
879
+ | spearman_manhattan | 0.8432 |
880
+ | pearson_euclidean | 0.8345 |
881
+ | spearman_euclidean | 0.8466 |
882
+ | pearson_dot | 0.5521 |
883
+ | spearman_dot | 0.5319 |
884
+ | pearson_max | 0.8345 |
885
+ | spearman_max | 0.8466 |
886
+
887
+ #### Semantic Similarity
888
+ * Dataset: `sts-test-16`
889
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
890
+
891
+ | Metric | Value |
892
+ |:--------------------|:-----------|
893
+ | pearson_cosine | 0.7198 |
894
+ | **spearman_cosine** | **0.8072** |
895
+ | pearson_manhattan | 0.7806 |
896
+ | spearman_manhattan | 0.7998 |
897
+ | pearson_euclidean | 0.7879 |
898
+ | spearman_euclidean | 0.809 |
899
+ | pearson_dot | 0.4496 |
900
+ | spearman_dot | 0.4412 |
901
+ | pearson_max | 0.7879 |
902
+ | spearman_max | 0.809 |
903
+
904
+ <!--
905
+ ## Bias, Risks and Limitations
906
+
907
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
908
+ -->
909
+
910
+ <!--
911
+ ### Recommendations
912
+
913
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
914
+ -->
915
+
916
+ ## Training Details
917
+
918
+ ### Training Dataset
919
+
920
+ #### clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
921
+
922
+ * Dataset: clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
923
+ * Size: 2,697 training samples
924
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
925
+ * Approximate statistics based on the first 1000 samples:
926
+ | | sentence1 | sentence2 | score |
927
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
928
+ | type | string | string | float |
929
+ | details | <ul><li>min: 8 tokens</li><li>mean: 22.25 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 22.01 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.67</li><li>max: 5.0</li></ul> |
930
+ * Samples:
931
+ | sentence1 | sentence2 | score |
932
+ |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------|
933
+ | <code>El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha.</code> | <code>Un ave de color amarillo descansaba tranquilamente en una rama.</code> | <code>3.200000047683716</code> |
934
+ | <code>Una chica está tocando la flauta en un parque.</code> | <code>Un grupo de músicos está tocando en un escenario al aire libre.</code> | <code>1.286</code> |
935
+ | <code>La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece</code> | <code>La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere</code> | <code>4.199999809265137</code> |
936
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
937
+ ```json
938
+ {
939
+ "loss": "CoSENTLoss",
940
+ "matryoshka_dims": [
941
+ 768,
942
+ 512,
943
+ 256,
944
+ 128,
945
+ 64,
946
+ 32,
947
+ 16
948
+ ],
949
+ "matryoshka_weights": [
950
+ 1,
951
+ 1,
952
+ 1,
953
+ 1,
954
+ 1,
955
+ 1,
956
+ 1
957
+ ],
958
+ "n_dims_per_step": -1
959
+ }
960
+ ```
961
+
962
+ ### Evaluation Dataset
963
+
964
+ #### clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
965
+
966
+ * Dataset: clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
967
+ * Size: 697 evaluation samples
968
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
969
+ * Approximate statistics based on the first 1000 samples:
970
+ | | sentence1 | sentence2 | score |
971
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
972
+ | type | string | string | float |
973
+ | details | <ul><li>min: 8 tokens</li><li>mean: 22.76 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.26 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.3</li><li>max: 5.0</li></ul> |
974
+ * Samples:
975
+ | sentence1 | sentence2 | score |
976
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------|
977
+ | <code>Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas.</code> | <code>Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos.</code> | <code>4.199999809265137</code> |
978
+ | <code>"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud"</code> | <code>"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar."</code> | <code>3.5</code> |
979
+ | <code>El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario.</code> | <code>Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida.</code> | <code>3.691999912261963</code> |
980
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
981
+ ```json
982
+ {
983
+ "loss": "CoSENTLoss",
984
+ "matryoshka_dims": [
985
+ 768,
986
+ 512,
987
+ 256,
988
+ 128,
989
+ 64,
990
+ 32,
991
+ 16
992
+ ],
993
+ "matryoshka_weights": [
994
+ 1,
995
+ 1,
996
+ 1,
997
+ 1,
998
+ 1,
999
+ 1,
1000
+ 1
1001
+ ],
1002
+ "n_dims_per_step": -1
1003
+ }
1004
+ ```
1005
+
1006
+ ### Training Hyperparameters
1007
+ #### Non-Default Hyperparameters
1008
+
1009
+ - `eval_strategy`: steps
1010
+ - `per_device_train_batch_size`: 16
1011
+ - `per_device_eval_batch_size`: 16
1012
+ - `num_train_epochs`: 5
1013
+ - `warmup_ratio`: 0.1
1014
+ - `fp16`: True
1015
+
1016
+ #### All Hyperparameters
1017
+ <details><summary>Click to expand</summary>
1018
+
1019
+ - `overwrite_output_dir`: False
1020
+ - `do_predict`: False
1021
+ - `eval_strategy`: steps
1022
+ - `prediction_loss_only`: True
1023
+ - `per_device_train_batch_size`: 16
1024
+ - `per_device_eval_batch_size`: 16
1025
+ - `per_gpu_train_batch_size`: None
1026
+ - `per_gpu_eval_batch_size`: None
1027
+ - `gradient_accumulation_steps`: 1
1028
+ - `eval_accumulation_steps`: None
1029
+ - `learning_rate`: 5e-05
1030
+ - `weight_decay`: 0.0
1031
+ - `adam_beta1`: 0.9
1032
+ - `adam_beta2`: 0.999
1033
+ - `adam_epsilon`: 1e-08
1034
+ - `max_grad_norm`: 1.0
1035
+ - `num_train_epochs`: 5
1036
+ - `max_steps`: -1
1037
+ - `lr_scheduler_type`: linear
1038
+ - `lr_scheduler_kwargs`: {}
1039
+ - `warmup_ratio`: 0.1
1040
+ - `warmup_steps`: 0
1041
+ - `log_level`: passive
1042
+ - `log_level_replica`: warning
1043
+ - `log_on_each_node`: True
1044
+ - `logging_nan_inf_filter`: True
1045
+ - `save_safetensors`: True
1046
+ - `save_on_each_node`: False
1047
+ - `save_only_model`: False
1048
+ - `restore_callback_states_from_checkpoint`: False
1049
+ - `no_cuda`: False
1050
+ - `use_cpu`: False
1051
+ - `use_mps_device`: False
1052
+ - `seed`: 42
1053
+ - `data_seed`: None
1054
+ - `jit_mode_eval`: False
1055
+ - `use_ipex`: False
1056
+ - `bf16`: False
1057
+ - `fp16`: True
1058
+ - `fp16_opt_level`: O1
1059
+ - `half_precision_backend`: auto
1060
+ - `bf16_full_eval`: False
1061
+ - `fp16_full_eval`: False
1062
+ - `tf32`: None
1063
+ - `local_rank`: 0
1064
+ - `ddp_backend`: None
1065
+ - `tpu_num_cores`: None
1066
+ - `tpu_metrics_debug`: False
1067
+ - `debug`: []
1068
+ - `dataloader_drop_last`: False
1069
+ - `dataloader_num_workers`: 0
1070
+ - `dataloader_prefetch_factor`: None
1071
+ - `past_index`: -1
1072
+ - `disable_tqdm`: False
1073
+ - `remove_unused_columns`: True
1074
+ - `label_names`: None
1075
+ - `load_best_model_at_end`: False
1076
+ - `ignore_data_skip`: False
1077
+ - `fsdp`: []
1078
+ - `fsdp_min_num_params`: 0
1079
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1080
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1081
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1082
+ - `deepspeed`: None
1083
+ - `label_smoothing_factor`: 0.0
1084
+ - `optim`: adamw_torch
1085
+ - `optim_args`: None
1086
+ - `adafactor`: False
1087
+ - `group_by_length`: False
1088
+ - `length_column_name`: length
1089
+ - `ddp_find_unused_parameters`: None
1090
+ - `ddp_bucket_cap_mb`: None
1091
+ - `ddp_broadcast_buffers`: False
1092
+ - `dataloader_pin_memory`: True
1093
+ - `dataloader_persistent_workers`: False
1094
+ - `skip_memory_metrics`: True
1095
+ - `use_legacy_prediction_loop`: False
1096
+ - `push_to_hub`: False
1097
+ - `resume_from_checkpoint`: None
1098
+ - `hub_model_id`: None
1099
+ - `hub_strategy`: every_save
1100
+ - `hub_private_repo`: False
1101
+ - `hub_always_push`: False
1102
+ - `gradient_checkpointing`: False
1103
+ - `gradient_checkpointing_kwargs`: None
1104
+ - `include_inputs_for_metrics`: False
1105
+ - `eval_do_concat_batches`: True
1106
+ - `fp16_backend`: auto
1107
+ - `push_to_hub_model_id`: None
1108
+ - `push_to_hub_organization`: None
1109
+ - `mp_parameters`:
1110
+ - `auto_find_batch_size`: False
1111
+ - `full_determinism`: False
1112
+ - `torchdynamo`: None
1113
+ - `ray_scope`: last
1114
+ - `ddp_timeout`: 1800
1115
+ - `torch_compile`: False
1116
+ - `torch_compile_backend`: None
1117
+ - `torch_compile_mode`: None
1118
+ - `dispatch_batches`: None
1119
+ - `split_batches`: None
1120
+ - `include_tokens_per_second`: False
1121
+ - `include_num_input_tokens_seen`: False
1122
+ - `neftune_noise_alpha`: None
1123
+ - `optim_target_modules`: None
1124
+ - `batch_eval_metrics`: False
1125
+ - `batch_sampler`: batch_sampler
1126
+ - `multi_dataset_batch_sampler`: proportional
1127
+
1128
+ </details>
1129
+
1130
+ ### Training Logs
1131
+ | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-16_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-16_spearman_cosine | sts-test-256_spearman_cosine | sts-test-32_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
1132
+ |:------:|:----:|:-------------:|:-------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
1133
+ | 0.5917 | 100 | 30.7503 | 30.6172 | 0.8117 | 0.7110 | 0.8179 | 0.7457 | 0.8244 | 0.7884 | 0.8252 | - | - | - | - | - | - | - |
1134
+ | 1.1834 | 200 | 30.4696 | 32.6422 | 0.7952 | 0.7198 | 0.8076 | 0.7491 | 0.8125 | 0.7813 | 0.8142 | - | - | - | - | - | - | - |
1135
+ | 1.7751 | 300 | 29.9233 | 31.5469 | 0.8152 | 0.7435 | 0.8250 | 0.7737 | 0.8302 | 0.8006 | 0.8305 | - | - | - | - | - | - | - |
1136
+ | 2.3669 | 400 | 29.0716 | 31.8088 | 0.8183 | 0.7405 | 0.8248 | 0.7758 | 0.8299 | 0.8057 | 0.8324 | - | - | - | - | - | - | - |
1137
+ | 2.9586 | 500 | 28.7971 | 32.6032 | 0.8176 | 0.7430 | 0.8241 | 0.7777 | 0.8289 | 0.8025 | 0.8316 | - | - | - | - | - | - | - |
1138
+ | 3.5503 | 600 | 27.4766 | 34.7911 | 0.8241 | 0.7400 | 0.8314 | 0.7730 | 0.8369 | 0.8061 | 0.8394 | - | - | - | - | - | - | - |
1139
+ | 4.1420 | 700 | 27.0639 | 35.7418 | 0.8294 | 0.7466 | 0.8354 | 0.7784 | 0.8389 | 0.8107 | 0.8409 | - | - | - | - | - | - | - |
1140
+ | 4.7337 | 800 | 26.5119 | 36.2014 | 0.8305 | 0.7425 | 0.8356 | 0.7806 | 0.8406 | 0.8152 | 0.8430 | - | - | - | - | - | - | - |
1141
+ | 5.0 | 845 | - | - | - | - | - | - | - | - | - | 0.8645 | 0.8072 | 0.8715 | 0.8425 | 0.8761 | 0.8585 | 0.8775 |
1142
+
1143
+
1144
+ ### Framework Versions
1145
+ - Python: 3.10.12
1146
+ - Sentence Transformers: 3.0.0
1147
+ - Transformers: 4.41.1
1148
+ - PyTorch: 2.3.0+cu121
1149
+ - Accelerate: 0.30.1
1150
+ - Datasets: 2.19.1
1151
+ - Tokenizers: 0.19.1
1152
+
1153
+ ## Citation
1154
+
1155
+ ### BibTeX
1156
+
1157
+ #### Sentence Transformers
1158
+ ```bibtex
1159
+ @inproceedings{reimers-2019-sentence-bert,
1160
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1161
+ author = "Reimers, Nils and Gurevych, Iryna",
1162
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1163
+ month = "11",
1164
+ year = "2019",
1165
+ publisher = "Association for Computational Linguistics",
1166
+ url = "https://arxiv.org/abs/1908.10084",
1167
+ }
1168
+ ```
1169
+
1170
+ #### MatryoshkaLoss
1171
+ ```bibtex
1172
+ @misc{kusupati2024matryoshka,
1173
+ title={Matryoshka Representation Learning},
1174
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1175
+ year={2024},
1176
+ eprint={2205.13147},
1177
+ archivePrefix={arXiv},
1178
+ primaryClass={cs.LG}
1179
+ }
1180
+ ```
1181
+
1182
+ #### CoSENTLoss
1183
+ ```bibtex
1184
+ @online{kexuefm-8847,
1185
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
1186
+ author={Su Jianlin},
1187
+ year={2022},
1188
+ month={Jan},
1189
+ url={https://kexue.fm/archives/8847},
1190
+ }
1191
+ ```
1192
+
1193
+ <!--
1194
+ ## Glossary
1195
+
1196
+ *Clearly define terms in order to be accessible across audiences.*
1197
+ -->
1198
+
1199
+ <!--
1200
+ ## Model Card Authors
1201
+
1202
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1203
+ -->
1204
+
1205
+ <!--
1206
+ ## Model Card Contact
1207
+
1208
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1209
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-large",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.41.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b31e31b46df73827fafdccebb896150b658d9e668ba5cee3147a5767ab860e72
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }