File size: 37,784 Bytes
a98256c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6802647
a98256c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6802647
a98256c
6802647
a98256c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6802647
a98256c
6802647
a98256c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:CoSENTLoss
base_model: intfloat/multilingual-e5-large
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: El hombre captura una pelota
  sentences:
  - Un hombre lanza una pelota en el aire.
  - Un hombre se encuentra tocando una flauta de madera.
  - La mujer está maquillándose usando sombra de ojos.
- source_sentence: Un hombre está buscando algo.
  sentences:
  - En un mercado de granjeros, se encuentra un hombre.
  - Se acerca a la pista un avión suizo de color blanco.
  - dos chicas jóvenes se abrazan en la hierba.
- source_sentence: El avión está tocando tierra.
  sentences:
  - El avión animado se encuentra en proceso de aterrizaje.
  - La capital de Siria fue golpeada por dos explosiones
  - Violentos incidentes afectan a estudiantes chinos en Francia
- source_sentence: Un hombre saltando la cuerda.
  sentences:
  - Un hombre está saltando la cuerda.
  - Una mujer entrena a su perro para saltar en el aire.
  - Los gatitos están comiendo de los platos.
- source_sentence: tres perros gruñendo entre 
  sentences:
  - Dos perros se aproximan uno al otro en el pasto.
  - Una mujer sonriente brinda cariño a un pequeño bebé.
  - Una mujer está montando a caballo en el campo.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-large
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 768
      type: sts-dev-768
    metrics:
    - type: pearson_cosine
      value: 0.8279951103268512
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8342643795984531
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8228439538329566
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.834870903153992
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8231076969394738
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8349270059177344
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8196281042113861
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8248683461954115
      name: Spearman Dot
    - type: pearson_max
      value: 0.8279951103268512
      name: Pearson Max
    - type: spearman_max
      value: 0.8349270059177344
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 512
      type: sts-dev-512
    metrics:
    - type: pearson_cosine
      value: 0.8236357426336446
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8332692872015282
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8217552769156274
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8331746060276878
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8217859136681092
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8334069456110773
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8101789790612713
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8179205607773823
      name: Spearman Dot
    - type: pearson_max
      value: 0.8236357426336446
      name: Pearson Max
    - type: spearman_max
      value: 0.8334069456110773
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 256
      type: sts-dev-256
    metrics:
    - type: pearson_cosine
      value: 0.816222860848086
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8303708513421737
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8178715987143794
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8301047046554985
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8183826652089494
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8301804247624904
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7878741921967743
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7904844114269662
      name: Spearman Dot
    - type: pearson_max
      value: 0.8183826652089494
      name: Pearson Max
    - type: spearman_max
      value: 0.8303708513421737
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 128
      type: sts-dev-128
    metrics:
    - type: pearson_cosine
      value: 0.794202606017138
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8198385906414491
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8088714046889546
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8222921243120748
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8092312345267045
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8220266161646009
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7341586721030032
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7351749794310246
      name: Spearman Dot
    - type: pearson_max
      value: 0.8092312345267045
      name: Pearson Max
    - type: spearman_max
      value: 0.8222921243120748
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 64
      type: sts-dev-64
    metrics:
    - type: pearson_cosine
      value: 0.7727295051414095
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8076629783565549
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7976419723073269
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8147883308842346
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7979124462870892
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8123832197697319
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6725844492342726
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6673162832940408
      name: Spearman Dot
    - type: pearson_max
      value: 0.7979124462870892
      name: Pearson Max
    - type: spearman_max
      value: 0.8147883308842346
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: 0.8630482725201897
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8813284718659181
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8770818288812614
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8810971983428288
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8770132070253477
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8812162173545179
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8581811981775829
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8707402246720045
      name: Spearman Dot
    - type: pearson_max
      value: 0.8770818288812614
      name: Pearson Max
    - type: spearman_max
      value: 0.8813284718659181
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: 0.8589909139210625
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8799604919891442
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8744468387217347
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8791142262015441
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8747974723064821
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8795698184784307
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8464185524060444
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8549652098582826
      name: Spearman Dot
    - type: pearson_max
      value: 0.8747974723064821
      name: Pearson Max
    - type: spearman_max
      value: 0.8799604919891442
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.8528262537030415
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8762917275750132
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8715060008387856
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8780718380107112
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.87251419758469
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8788770265821976
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.801980870958869
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8007112694661982
      name: Spearman Dot
    - type: pearson_max
      value: 0.87251419758469
      name: Pearson Max
    - type: spearman_max
      value: 0.8788770265821976
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.8392066286150661
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8692426944903685
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8631603748425567
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8715673768304316
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8643871758114816
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8724091426441261
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7461565194503229
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7403017354497338
      name: Spearman Dot
    - type: pearson_max
      value: 0.8643871758114816
      name: Pearson Max
    - type: spearman_max
      value: 0.8724091426441261
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.8213671607347727
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8621003145087452
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8530869243121955
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8631973638935834
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.854140567169475
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8632627342101252
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6853599968011839
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6726454086764928
      name: Spearman Dot
    - type: pearson_max
      value: 0.854140567169475
      name: Pearson Max
    - type: spearman_max
      value: 0.8632627342101252
      name: Spearman Max
---

# SentenceTransformer based on intfloat/multilingual-e5-large

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - stsb_multi_es_aug
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-64-5e")
# Run inference
sentences = [
    'tres perros gruñendo entre sí',
    'Dos perros se aproximan uno al otro en el pasto.',
    'Una mujer sonriente brinda cariño a un pequeño bebé.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.828      |
| **spearman_cosine** | **0.8343** |
| pearson_manhattan   | 0.8228     |
| spearman_manhattan  | 0.8349     |
| pearson_euclidean   | 0.8231     |
| spearman_euclidean  | 0.8349     |
| pearson_dot         | 0.8196     |
| spearman_dot        | 0.8249     |
| pearson_max         | 0.828      |
| spearman_max        | 0.8349     |

#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8236     |
| **spearman_cosine** | **0.8333** |
| pearson_manhattan   | 0.8218     |
| spearman_manhattan  | 0.8332     |
| pearson_euclidean   | 0.8218     |
| spearman_euclidean  | 0.8334     |
| pearson_dot         | 0.8102     |
| spearman_dot        | 0.8179     |
| pearson_max         | 0.8236     |
| spearman_max        | 0.8334     |

#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8162     |
| **spearman_cosine** | **0.8304** |
| pearson_manhattan   | 0.8179     |
| spearman_manhattan  | 0.8301     |
| pearson_euclidean   | 0.8184     |
| spearman_euclidean  | 0.8302     |
| pearson_dot         | 0.7879     |
| spearman_dot        | 0.7905     |
| pearson_max         | 0.8184     |
| spearman_max        | 0.8304     |

#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7942     |
| **spearman_cosine** | **0.8198** |
| pearson_manhattan   | 0.8089     |
| spearman_manhattan  | 0.8223     |
| pearson_euclidean   | 0.8092     |
| spearman_euclidean  | 0.822      |
| pearson_dot         | 0.7342     |
| spearman_dot        | 0.7352     |
| pearson_max         | 0.8092     |
| spearman_max        | 0.8223     |

#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7727     |
| **spearman_cosine** | **0.8077** |
| pearson_manhattan   | 0.7976     |
| spearman_manhattan  | 0.8148     |
| pearson_euclidean   | 0.7979     |
| spearman_euclidean  | 0.8124     |
| pearson_dot         | 0.6726     |
| spearman_dot        | 0.6673     |
| pearson_max         | 0.7979     |
| spearman_max        | 0.8148     |

#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.863      |
| **spearman_cosine** | **0.8813** |
| pearson_manhattan   | 0.8771     |
| spearman_manhattan  | 0.8811     |
| pearson_euclidean   | 0.877      |
| spearman_euclidean  | 0.8812     |
| pearson_dot         | 0.8582     |
| spearman_dot        | 0.8707     |
| pearson_max         | 0.8771     |
| spearman_max        | 0.8813     |

#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value    |
|:--------------------|:---------|
| pearson_cosine      | 0.859    |
| **spearman_cosine** | **0.88** |
| pearson_manhattan   | 0.8744   |
| spearman_manhattan  | 0.8791   |
| pearson_euclidean   | 0.8748   |
| spearman_euclidean  | 0.8796   |
| pearson_dot         | 0.8464   |
| spearman_dot        | 0.855    |
| pearson_max         | 0.8748   |
| spearman_max        | 0.88     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8528     |
| **spearman_cosine** | **0.8763** |
| pearson_manhattan   | 0.8715     |
| spearman_manhattan  | 0.8781     |
| pearson_euclidean   | 0.8725     |
| spearman_euclidean  | 0.8789     |
| pearson_dot         | 0.802      |
| spearman_dot        | 0.8007     |
| pearson_max         | 0.8725     |
| spearman_max        | 0.8789     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8392     |
| **spearman_cosine** | **0.8692** |
| pearson_manhattan   | 0.8632     |
| spearman_manhattan  | 0.8716     |
| pearson_euclidean   | 0.8644     |
| spearman_euclidean  | 0.8724     |
| pearson_dot         | 0.7462     |
| spearman_dot        | 0.7403     |
| pearson_max         | 0.8644     |
| spearman_max        | 0.8724     |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8214     |
| **spearman_cosine** | **0.8621** |
| pearson_manhattan   | 0.8531     |
| spearman_manhattan  | 0.8632     |
| pearson_euclidean   | 0.8541     |
| spearman_euclidean  | 0.8633     |
| pearson_dot         | 0.6854     |
| spearman_dot        | 0.6726     |
| pearson_max         | 0.8541     |
| spearman_max        | 0.8633     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### stsb_multi_es_aug

* Dataset: stsb_multi_es_aug
* Size: 2,697 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 8 tokens</li><li>mean: 22.25 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 22.01 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.67</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                                                             | sentence2                                                                                                    | score                          |
  |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------|
  | <code>El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha.</code>    | <code>Un ave de color amarillo descansaba tranquilamente en una rama.</code>                                 | <code>3.200000047683716</code> |
  | <code>Una chica está tocando la flauta en un parque.</code>                                           | <code>Un grupo de músicos está tocando en un escenario al aire libre.</code>                                 | <code>1.286</code>             |
  | <code>La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece</code> | <code>La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere</code> | <code>4.199999809265137</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### stsb_multi_es_aug

* Dataset: stsb_multi_es_aug
* Size: 697 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                         |
  | details | <ul><li>min: 8 tokens</li><li>mean: 22.76 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.26 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.3</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                           | sentence2                                                                                                                                                     | score                          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------|
  | <code>Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas.</code>                                                     | <code>Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos.</code>                                           | <code>4.199999809265137</code> |
  | <code>"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud"</code>                                   | <code>"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar."</code>                                                           | <code>3.5</code>               |
  | <code>El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario.</code> | <code>Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida.</code> | <code>3.691999912261963</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss    | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 0.5917 | 100  | 21.7032       | 21.7030 | 0.8030                      | 0.8124                      | 0.8205                      | 0.7839                     | 0.8215                      | -                            | -                            | -                            | -                           | -                            |
| 1.1834 | 200  | 21.4019       | 24.0898 | 0.7839                      | 0.7972                      | 0.8038                      | 0.7680                     | 0.8062                      | -                            | -                            | -                            | -                           | -                            |
| 1.7751 | 300  | 21.2168       | 22.5421 | 0.7909                      | 0.8027                      | 0.8058                      | 0.7786                     | 0.8068                      | -                            | -                            | -                            | -                           | -                            |
| 2.3669 | 400  | 20.7049       | 23.6522 | 0.7938                      | 0.8049                      | 0.8108                      | 0.7873                     | 0.8123                      | -                            | -                            | -                            | -                           | -                            |
| 2.9586 | 500  | 20.5077       | 23.6100 | 0.8017                      | 0.8116                      | 0.8155                      | 0.7893                     | 0.8185                      | -                            | -                            | -                            | -                           | -                            |
| 3.5503 | 600  | 19.2725       | 24.7539 | 0.8133                      | 0.8254                      | 0.8291                      | 0.8032                     | 0.8314                      | -                            | -                            | -                            | -                           | -                            |
| 4.1420 | 700  | 19.0841       | 26.5286 | 0.8210                      | 0.8298                      | 0.8333                      | 0.8102                     | 0.8333                      | -                            | -                            | -                            | -                           | -                            |
| 4.7337 | 800  | 18.6847       | 26.8158 | 0.8198                      | 0.8304                      | 0.8333                      | 0.8077                     | 0.8343                      | -                            | -                            | -                            | -                           | -                            |
| 5.0    | 845  | -             | -       | -                           | -                           | -                           | -                          | -                           | 0.8692                       | 0.8763                       | 0.8800                       | 0.8621                      | 0.8813                       |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->