File size: 15,571 Bytes
8aaf4ef
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc846f17250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc846f07780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690819438006079394, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApW7ePgWvRjwsJxU/pW7ePgWvRjwsJxU/pW7ePgWvRjwsJxU/pW7ePgWvRjwsJxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAY+lLvEh4Cz8E3iw/cCFLv6YmtT+lPMS+iVs3v7Wvir/v7bC9Vzaxv+X6kr7j/dG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAClbt4+Ba9GPCwnFT9pztC79aEeO5fhzLulbt4+Ba9GPCwnFT9pztC79aEeO5fhzLulbt4+Ba9GPCwnFT9pztC79aEeO5fhzLulbt4+Ba9GPCwnFT9pztC79aEeO5fhzLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4344379  0.01212669 0.58262897]\n [0.4344379  0.01212669 0.58262897]\n [0.4344379  0.01212669 0.58262897]\n [0.4344379  0.01212669 0.58262897]]", "desired_goal": "[[-0.01244578  0.5448041   0.6752627 ]\n [-0.79347897  1.415242   -0.38327518]\n [-0.71624047 -1.0834872  -0.08639132]\n [-1.3844708  -0.28707042 -1.6405605 ]]", "observation": "[[ 0.4344379   0.01212669  0.58262897 -0.00637226  0.00242054 -0.00625248]\n [ 0.4344379   0.01212669  0.58262897 -0.00637226  0.00242054 -0.00625248]\n [ 0.4344379   0.01212669  0.58262897 -0.00637226  0.00242054 -0.00625248]\n [ 0.4344379   0.01212669  0.58262897 -0.00637226  0.00242054 -0.00625248]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlve2PTObvbxrvpU+OuArPZ644b18Szk+GW24PWxEAj5noUU+3vEWPiW8Db4Bg4U+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.08933942 -0.02314529  0.2924684 ]\n [ 0.04196189 -0.11021541  0.18095201]\n [ 0.09005184  0.12721413  0.19299851]\n [ 0.14740703 -0.13841303  0.2607651 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIj9/b9Ge/6b+UhpRSlIwBbJRLMowBdJRHQKYjbRtP5591fZQoaAZoCWgPQwimgLT/Adbhv5SGlFKUaBVLMmgWR0CmIy0wJw85dX2UKGgGaAloD0MIyERKs3mc9b+UhpRSlGgVSzJoFkdApiLv2h7E53V9lChoBmgJaA9DCBsRjINLR+W/lIaUUpRoFUsyaBZHQKYisYBvJil1fZQoaAZoCWgPQwiLTwEwnoHwv5SGlFKUaBVLMmgWR0CmJISeAd4ndX2UKGgGaAloD0MINSiaB7DI6L+UhpRSlGgVSzJoFkdApiREr5IpY3V9lChoBmgJaA9DCI+n5Qeucuy/lIaUUpRoFUsyaBZHQKYkB1V5rxl1fZQoaAZoCWgPQwgsKuJ0ki3pv5SGlFKUaBVLMmgWR0CmI8lHrhR7dX2UKGgGaAloD0MIK2nFNxS+5L+UhpRSlGgVSzJoFkdApiWapR4yGnV9lChoBmgJaA9DCNogk4ychfO/lIaUUpRoFUsyaBZHQKYlWrFwT/R1fZQoaAZoCWgPQwiqYFRSJ6Dov5SGlFKUaBVLMmgWR0CmJR1CHARDdX2UKGgGaAloD0MIHxMpzebx5b+UhpRSlGgVSzJoFkdApiTe8RL9M3V9lChoBmgJaA9DCHYzox8N5/K/lIaUUpRoFUsyaBZHQKYmqBK+SKZ1fZQoaAZoCWgPQwj6tmCpLqD3v5SGlFKUaBVLMmgWR0CmJmgXuVopdX2UKGgGaAloD0MIumbyzTa38b+UhpRSlGgVSzJoFkdApiYqpeeFtnV9lChoBmgJaA9DCEc82c2M/uK/lIaUUpRoFUsyaBZHQKYl7DziCJ51fZQoaAZoCWgPQwichxOYTmvrv5SGlFKUaBVLMmgWR0CmJ8BBzFMqdX2UKGgGaAloD0MIQC/cuTDS37+UhpRSlGgVSzJoFkdApieAL/jsEHV9lChoBmgJaA9DCKWeBaG8z/e/lIaUUpRoFUsyaBZHQKYnQsSTQmh1fZQoaAZoCWgPQwh+VMN+Tyznv5SGlFKUaBVLMmgWR0CmJwR5LRKIdX2UKGgGaAloD0MIGJP+XgoP+L+UhpRSlGgVSzJoFkdApijUkv9LpXV9lChoBmgJaA9DCPbRqSuf5eG/lIaUUpRoFUsyaBZHQKYolUdaMaV1fZQoaAZoCWgPQwhgOxixTwDkv5SGlFKUaBVLMmgWR0CmKFitJWeZdX2UKGgGaAloD0MIbM1WXvK/9r+UhpRSlGgVSzJoFkdApigbEDQqqnV9lChoBmgJaA9DCP8JLlbU4Oa/lIaUUpRoFUsyaBZHQKYp7zqbBoF1fZQoaAZoCWgPQwiEuHL2zmjbv5SGlFKUaBVLMmgWR0CmKa9kJ8fFdX2UKGgGaAloD0MIO6xwy0cS9b+UhpRSlGgVSzJoFkdApilyp5u63HV9lChoBmgJaA9DCHFYGvhRDey/lIaUUpRoFUsyaBZHQKYpNESdvsJ1fZQoaAZoCWgPQwis5GN3gRLrv5SGlFKUaBVLMmgWR0CmKxCHZbpvdX2UKGgGaAloD0MIyF2EKcol6b+UhpRSlGgVSzJoFkdApirQk7fYSXV9lChoBmgJaA9DCFT9SufDs/G/lIaUUpRoFUsyaBZHQKYqkyHEdeZ1fZQoaAZoCWgPQwgCRwINNvXjv5SGlFKUaBVLMmgWR0CmKlTcIqsmdX2UKGgGaAloD0MIU5YhjnUx87+UhpRSlGgVSzJoFkdApiwr5ftx/HV9lChoBmgJaA9DCPZgUnx8Qum/lIaUUpRoFUsyaBZHQKYr6/7iyY51fZQoaAZoCWgPQwgP0H05s13iv5SGlFKUaBVLMmgWR0CmK66K+BYndX2UKGgGaAloD0MIxZEHIou057+UhpRSlGgVSzJoFkdApitwVEd/8XV9lChoBmgJaA9DCIQroFBPn+u/lIaUUpRoFUsyaBZHQKYtPIWgvlF1fZQoaAZoCWgPQwhQiesYVzwDwJSGlFKUaBVLMmgWR0CmLPx9XtBwdX2UKGgGaAloD0MIsmZkkLsI37+UhpRSlGgVSzJoFkdApiy/LaEi+3V9lChoBmgJaA9DCL9DUaBPZO6/lIaUUpRoFUsyaBZHQKYsgNPP9k11fZQoaAZoCWgPQwgxs89jlOfnv5SGlFKUaBVLMmgWR0CmLlc89wFUdX2UKGgGaAloD0MIe4LEdvcA3b+UhpRSlGgVSzJoFkdApi4XiaRZEHV9lChoBmgJaA9DCMWu7e2WZOS/lIaUUpRoFUsyaBZHQKYt2k+HJtB1fZQoaAZoCWgPQwgYWp2cofjyv5SGlFKUaBVLMmgWR0CmLZwGnn+ydX2UKGgGaAloD0MIwtzu5T4527+UhpRSlGgVSzJoFkdApi91WluWKXV9lChoBmgJaA9DCC52+6wy0+K/lIaUUpRoFUsyaBZHQKYvNWDHwPR1fZQoaAZoCWgPQwizlgLS/ofvv5SGlFKUaBVLMmgWR0CmLvfzasZHdX2UKGgGaAloD0MIdjdPdcjN6L+UhpRSlGgVSzJoFkdApi65hjOLSHV9lChoBmgJaA9DCBnG3SBaK9W/lIaUUpRoFUsyaBZHQKYw9BO58Sh1fZQoaAZoCWgPQwjNzqJ3KmDiv5SGlFKUaBVLMmgWR0CmMLTot+TedX2UKGgGaAloD0MIpoEf1bBf57+UhpRSlGgVSzJoFkdApjB5f4REnnV9lChoBmgJaA9DCLL2d7ZHb9C/lIaUUpRoFUsyaBZHQKYwPB8hLXd1fZQoaAZoCWgPQwhyqN+Frdnfv5SGlFKUaBVLMmgWR0CmMsHBciW3dX2UKGgGaAloD0MIF2ahndPs8L+UhpRSlGgVSzJoFkdApjKCouPFN3V9lChoBmgJaA9DCEtZhjjWxeK/lIaUUpRoFUsyaBZHQKYyRfBvaUR1fZQoaAZoCWgPQwg10eejjLjkv5SGlFKUaBVLMmgWR0CmMghuXNTtdX2UKGgGaAloD0MIUYU/w5s15b+UhpRSlGgVSzJoFkdApjSLsQd0aXV9lChoBmgJaA9DCPT7/s2LE+a/lIaUUpRoFUsyaBZHQKY0TGb1AZ91fZQoaAZoCWgPQwi4XP3YJP/wv5SGlFKUaBVLMmgWR0CmNA+l0o0AdX2UKGgGaAloD0MIoyHjUSrh2r+UhpRSlGgVSzJoFkdApjPSNCJGfHV9lChoBmgJaA9DCOXRjbCoyPO/lIaUUpRoFUsyaBZHQKY2k4R28qZ1fZQoaAZoCWgPQwiQTl35LM/kv5SGlFKUaBVLMmgWR0CmNlRptaZAdX2UKGgGaAloD0MILe4/Mh1687+UhpRSlGgVSzJoFkdApjYZEa2nbnV9lChoBmgJaA9DCDkpzHucKfK/lIaUUpRoFUsyaBZHQKY126p5u651fZQoaAZoCWgPQwgTKji8IKLpv5SGlFKUaBVLMmgWR0CmN+DFAE+xdX2UKGgGaAloD0MI2PSgoBSt6b+UhpRSlGgVSzJoFkdApjegvnKW9nV9lChoBmgJaA9DCEiI8gUtJNi/lIaUUpRoFUsyaBZHQKY3Y0Y0l7d1fZQoaAZoCWgPQwjGhQMhWUD1v5SGlFKUaBVLMmgWR0CmNyTy8SPEdX2UKGgGaAloD0MIBygNNQpJ1r+UhpRSlGgVSzJoFkdApjj3Vf/m1nV9lChoBmgJaA9DCJS9pZwv9u2/lIaUUpRoFUsyaBZHQKY4t1J17pp1fZQoaAZoCWgPQwjL2Tujrcrvv5SGlFKUaBVLMmgWR0CmOHm2TgVHdX2UKGgGaAloD0MIUyXK3lJO4L+UhpRSlGgVSzJoFkdApjg7NpudgHV9lChoBmgJaA9DCLiswmaAC+i/lIaUUpRoFUsyaBZHQKY6ExIJ7cB1fZQoaAZoCWgPQwifrBiuDoDgv5SGlFKUaBVLMmgWR0CmOdMK1G9YdX2UKGgGaAloD0MIn6pCA7Fs7r+UhpRSlGgVSzJoFkdApjmVqWTouHV9lChoBmgJaA9DCGueI/JdSuO/lIaUUpRoFUsyaBZHQKY5V5WRzRx1fZQoaAZoCWgPQwghdqbQeQ3mv5SGlFKUaBVLMmgWR0CmOyWNedCmdX2UKGgGaAloD0MIf4P26uMh4b+UhpRSlGgVSzJoFkdApjrljbzshXV9lChoBmgJaA9DCJyjjo6rkeG/lIaUUpRoFUsyaBZHQKY6qC2c8T11fZQoaAZoCWgPQwiaQ1ILJZPYv5SGlFKUaBVLMmgWR0CmOmntv4ucdX2UKGgGaAloD0MI83FtqBjn4L+UhpRSlGgVSzJoFkdApjxHGCI1tXV9lChoBmgJaA9DCK97KxIT1OC/lIaUUpRoFUsyaBZHQKY8Bx1gYxd1fZQoaAZoCWgPQwgujzUjg9zlv5SGlFKUaBVLMmgWR0CmO8nFYMfBdX2UKGgGaAloD0MIj/6Xa9EC3b+UhpRSlGgVSzJoFkdApjuLZ39rGnV9lChoBmgJaA9DCJaxoZv9gd2/lIaUUpRoFUsyaBZHQKY9YvW6K+B1fZQoaAZoCWgPQwjPa+wS1Zv7v5SGlFKUaBVLMmgWR0CmPSPacqe9dX2UKGgGaAloD0MIFytqMA1D8b+UhpRSlGgVSzJoFkdApjznL9uP3nV9lChoBmgJaA9DCEUuOIO/3+C/lIaUUpRoFUsyaBZHQKY8qQCjk+51fZQoaAZoCWgPQwjhmdAksaTgv5SGlFKUaBVLMmgWR0CmPn+qioKldX2UKGgGaAloD0MISFFn7iGh+L+UhpRSlGgVSzJoFkdApj4/kkrwv3V9lChoBmgJaA9DCBe6EoHqH+m/lIaUUpRoFUsyaBZHQKY+Ai/O+qR1fZQoaAZoCWgPQwhxOzQsRl3iv5SGlFKUaBVLMmgWR0CmPcPcJtzkdX2UKGgGaAloD0MITUpBt5e067+UhpRSlGgVSzJoFkdApj+X4sVclnV9lChoBmgJaA9DCPxuumWH+PK/lIaUUpRoFUsyaBZHQKY/V+XqqwR1fZQoaAZoCWgPQwi4kbJF0m7nv5SGlFKUaBVLMmgWR0CmPxpd8iOedX2UKGgGaAloD0MIGJY/3xas6L+UhpRSlGgVSzJoFkdApj7cIomXxHV9lChoBmgJaA9DCIL+Qo8YPeS/lIaUUpRoFUsyaBZHQKZAqNnXd0t1fZQoaAZoCWgPQwg1JO6x9OHwv5SGlFKUaBVLMmgWR0CmQGjFhodudX2UKGgGaAloD0MIQpPEknJ35L+UhpRSlGgVSzJoFkdApkArW9US7HV9lChoBmgJaA9DCA1tADYgQuK/lIaUUpRoFUsyaBZHQKY/7OTq0MR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}