File size: 6,459 Bytes
ddba202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################

import numpy as np
import math, os, sys, types, time, gc
import torch
from src.utils import TOKENIZER
try:
    os.environ["CUDA_VISIBLE_DEVICES"] = sys.argv[1]
except:
    pass
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
np.set_printoptions(precision=4, suppress=True, linewidth=200)
args = types.SimpleNamespace()

########################################################################################################
# Step 1: set model & config
# Do this first: pip install torchdynamo
########################################################################################################

args.RUN_DEVICE = "cpu"  # 'cpu' (already fast) // 'cuda'
args.FLOAT_MODE = "fp32" # fp32 (good for CPU) // fp16 (good for GPU, does not work for CPU) // bf16 (less accurate, but works for CPU)

# if args.RUN_DEVICE == "cuda":
#     os.environ["RWKV_RUN_BACKEND"] = 'nvfuser' # !!!BUGGY!!! wrong output
os.environ["RWKV_JIT_ON"] = '1' # '1' or '0'. very useful for GPU/CPU fp32, but might be harmful for GPU fp16. please benchmark !!!

TOKEN_MODE = "pile"
WORD_NAME = [
    "20B_tokenizer_openchatgpt.json",
    "20B_tokenizer_openchatgpt.json",
]  # [vocab, vocab] for Pile model
UNKNOWN_CHAR = None
vocab_size = 50277 + 1

# Download Pile models: https://huggingface.co/BlinkDL
# or, set MODEL_NAME to your fine-tuned model

# MODEL_NAME = "/fsx/BlinkDL/rwkv-release/RWKV-4-Pile-169M-20220807-8023"
# n_layer = 12
# n_embd = 768
# ctx_len = 1024

MODEL_NAME = './out2/rwkv-5'
n_layer = 24
n_embd = 1024
ctx_len = 1024

# MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-1b5/RWKV-4-Pile-1B5-20220903-8040'
# n_layer = 24
# n_embd = 2048
# ctx_len = 1024

# MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-3b/RWKV-4-Pile-3B-20221008-8023'
# n_layer = 32
# n_embd = 2560
# ctx_len = 1024

# MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-7b/RWKV-4-Pile-7B-20221115-8047'
# n_layer = 32
# n_embd = 4096
# ctx_len = 1024

args.MODEL_NAME = MODEL_NAME
args.n_layer = n_layer
args.n_embd = n_embd
args.ctx_len = ctx_len
args.vocab_size = vocab_size
args.head_qk = 0
args.pre_ffn = 0
args.grad_cp = 0
args.my_pos_emb = 0
os.environ["RWKV_RUN_DEVICE"] = args.RUN_DEVICE

########################################################################################################
# Step 2: set prompt & sampling stuffs
########################################################################################################

context = """quality: high

[System]
Assistant is a distilled language model trained by the community.<|STK_SP|>

[System]
<|STK_SP|>

[User]
Hi!<|STK_SP|>

[Assistant]
"""

NUM_TRIALS = 999
LENGTH_PER_TRIAL = 333

TEMPERATURE = 1.0
top_p = 0.8
top_p_newline = 0.9  # only used in TOKEN_MODE = char

DEBUG_DEBUG = False  # True False --> show softmax output

########################################################################################################

print(f'\nUsing {args.RUN_DEVICE.upper()}. Loading {MODEL_NAME}...')
from src.model_run import RWKV_RNN

model = RWKV_RNN(args)

print(f'\nOptimizing speed...')
out, _ = model.forward([187], None)
# print(out)
gc.collect()
torch.cuda.empty_cache()

# input(0)

print(f'\nLoading tokenizer {WORD_NAME}...')
tokenizer = TOKENIZER(WORD_NAME, UNKNOWN_CHAR=UNKNOWN_CHAR)
if TOKEN_MODE == "pile":
    assert tokenizer.tokenizer.decode([187]) == '\n'

########################################################################################################

if tokenizer.charMode:
    context = tokenizer.refine_context(context)
    ctx = [tokenizer.stoi.get(s, tokenizer.UNKNOWN_CHAR) for s in context]
else:
    ctx = tokenizer.tokenizer.encode(context)
src_len = len(ctx)
src_ctx = ctx.copy()

print("\nYour prompt has " + str(src_len) + " tokens.")
print(
    "Note: currently the first run takes a while if your prompt is long, as we are using RNN to preprocess the prompt. Use GPT to build the hidden state for better speed.\n"
)

time_slot = {}
time_ref = time.time_ns()

def record_time(name):
    if name not in time_slot:
        time_slot[name] = 1e20
    tt = (time.time_ns() - time_ref) / 1e9
    if tt < time_slot[name]:
        time_slot[name] = tt

init_state = None
init_out = None
state = None
out = None

for TRIAL in range(1 if DEBUG_DEBUG else NUM_TRIALS):
    print(("-" * 50) + '\n' + context, end="")

    time_ref = time.time_ns()
    ctx = src_ctx.copy()

    if TRIAL == 0:
        for i in range(src_len):
            x = ctx[: i + 1]
            if i == src_len - 1:
                init_out, init_state = model.forward(x, init_state)
            else:
                init_state = model.forward(x, init_state, preprocess_only=True)
        gc.collect()
        torch.cuda.empty_cache()

    record_time('preprocess')
    out_last = src_len
    for i in range(src_len, src_len + (1 if DEBUG_DEBUG else LENGTH_PER_TRIAL)):
        x = ctx[: i + 1]
        x = x[-ctx_len:]

        if i == src_len:
            out = init_out.clone()
            state = init_state.clone()
        else:
            out, state = model.forward(x, state)
        if DEBUG_DEBUG:
            print("model", np.array(x), "==>", np.array(out), np.max(out.cpu().numpy()), np.min(out.cpu().numpy()))
        if TOKEN_MODE == "pile":
            out[0] = -999999999  # disable <|endoftext|>

        ttt = tokenizer.sample_logits(
            out,
            x,
            ctx_len,
            temperature=TEMPERATURE,
            top_p_usual=top_p,
            top_p_newline=top_p_newline,
        )
        ctx += [ttt]

        if ttt == vocab_size - 1:
            break

        if tokenizer.charMode:
            char = tokenizer.itos[ttt]
            print(char, end="", flush=True)
        else:
            char = tokenizer.tokenizer.decode(ctx[out_last:])
            if '\ufffd' not in char:
                print(char, end="", flush=True)
                out_last = i+1

    record_time('total')
    # print(f'\n\n{time_slot}\n\n')
    print(
        f"\n\n--- preprocess {round(time_slot['preprocess'], 2)}s, generation {round(time_slot['total']-time_slot['preprocess'], 2)}s ", end = ''
    )

print(("-" * 50) + '\n')