--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision model-index: - name: distilbert-base-uncased_reveal_ft_0920 results: [] --- # distilbert-base-uncased_reveal_ft_0920 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2843 - Accuracy: 0.8937 - F1: 0.8779 - Precision: 0.6909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| | 0.2967 | 1.0 | 341 | 0.3203 | 0.8975 | 0.8490 | 0.4487 | | 0.2715 | 2.0 | 682 | 0.2838 | 0.8975 | 0.8492 | 0.6988 | | 0.2388 | 3.0 | 1023 | 0.2808 | 0.9002 | 0.8733 | 0.7302 | | 0.2157 | 4.0 | 1364 | 0.2843 | 0.8937 | 0.8779 | 0.6909 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.2.2 - Datasets 2.16.1 - Tokenizers 0.13.3