msladic commited on
Commit
42cc8cd
1 Parent(s): 3d5f1f1

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.41 +/- 0.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81274fa731f7a46be7c78f3c2778b8e567c8f9ab413bd854c142fabd925f9bb3
3
+ size 106831
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d47a0211e10>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7d47a021ad80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1689682300391050329,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbvTTPpjhc72moBU/bvTTPpjhc72moBU/bvTTPpjhc72moBU/bvTTPpjhc72moBU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJKTJP15xoz8Gido/vcLhvhvsPr9axdy+7/bUPsfAFD0/vby+ldDsPtyhqb+M6q6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABu9NM+mOFzvaagFT/yZd2749KAuxJuwbpu9NM+mOFzvaagFT/yZd2749KAuxJuwbpu9NM+mOFzvaagFT/yZd2749KAuxJuwbpu9NM+mOFzvaagFT/yZd2749KAuxJuwbqUaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.41397423 -0.05954131 0.58448255]\n [ 0.41397423 -0.05954131 0.58448255]\n [ 0.41397423 -0.05954131 0.58448255]\n [ 0.41397423 -0.05954131 0.58448255]]",
34
+ "desired_goal": "[[ 1.5753217 1.2768972 1.7073066 ]\n [-0.44093886 -0.7457902 -0.43119317]\n [ 0.41594645 0.03631666 -0.36863133]\n [ 0.46252885 -1.325252 -1.3665328 ]]",
35
+ "observation": "[[ 0.41397423 -0.05954131 0.58448255 -0.00675654 -0.00393139 -0.00147575]\n [ 0.41397423 -0.05954131 0.58448255 -0.00675654 -0.00393139 -0.00147575]\n [ 0.41397423 -0.05954131 0.58448255 -0.00675654 -0.00393139 -0.00147575]\n [ 0.41397423 -0.05954131 0.58448255 -0.00675654 -0.00393139 -0.00147575]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAf8sKPtdd7T0C03s99zORPQVv3b1q5IA+X8ufPGF15T2qw4w+uSEYvvh0ET5dWII+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.1355419 0.11590164 0.06148053]\n [ 0.0708999 -0.10812191 0.25174266]\n [ 0.01950615 0.11204029 0.2749303 ]\n [-0.14856614 0.14204776 0.2545804 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwALItcv/R3OMAWyUSzKMAXSUR0CocIanivPkdX2UKGgGR8AEGnO0LMLXaAdLMmgIR0CocEgB91EFdX2UKGgGR7/+FmBe5WilaAdLMmgIR0CocArIo3JgdX2UKGgGR8ADh5HEuQIVaAdLMmgIR0Cob8nP/rB1dX2UKGgGR8ABicCo0hvBaAdLMmgIR0CocWxL0z0pdX2UKGgGR8AOuwiaAnUlaAdLMmgIR0CocS2OQyRCdX2UKGgGR8AHLhtLteD4aAdLMmgIR0CocPBVENONdX2UKGgGR8AVF/rjYI0JaAdLMmgIR0CocK9rftQbdX2UKGgGR8ADUtGus90SaAdLMmgIR0CoclXJxNqQdX2UKGgGR8ACZfpljEvTaAdLMmgIR0CochcA7xNJdX2UKGgGR8ABhM+NcW0raAdLMmgIR0CocdnnuAqedX2UKGgGR8AWFmRNh3JQaAdLMmgIR0CocZklVtGedX2UKGgGR8AEO5c1O0swaAdLMmgIR0Coc7b961LKdX2UKGgGR8AWVDw6QvHtaAdLMmgIR0Coc3jRlYlqdX2UKGgGR8ARRfzBhx5taAdLMmgIR0CoczwqiGnGdX2UKGgGR8AV6e+VTrE+aAdLMmgIR0CocvvugHu7dX2UKGgGR8AOm+49X9zfaAdLMmgIR0CodVKw6hg3dX2UKGgGR8AUKquKXOW0aAdLMmgIR0CodRUUfxMGdX2UKGgGR8AB2QIUrTYvaAdLMmgIR0CodNiBwuM/dX2UKGgGR8ADCQxN7BwdaAdLMmgIR0CodJgxzq8ldX2UKGgGR8AC+oDPnjhlaAdLMmgIR0Codvyhi9ZidX2UKGgGR7/8S+UQkHD8aAdLMmgIR0Codr6V+qiodX2UKGgGR8AFUoOQQtjDaAdLMmgIR0CodoIlD4QCdX2UKGgGR8ADeFWXC0ngaAdLMmgIR0CodkHrIHTrdX2UKGgGR8ASrAbhm5DraAdLMmgIR0CoeK86FM7EdX2UKGgGR8AUyBVdX1aoaAdLMmgIR0CoeHFBppN9dX2UKGgGR8ACGTX8O09haAdLMmgIR0CoeDTGgi/xdX2UKGgGR8AG70Yj0L+haAdLMmgIR0Cod/TmW+oMdX2UKGgGR8ANwyylenhsaAdLMmgIR0Coemzqjaf0dX2UKGgGR8AWAvVVghKUaAdLMmgIR0Coei79Q40edX2UKGgGR8AFKBun/DLsaAdLMmgIR0CoefJo0ygxdX2UKGgGR8AHUujASFoMaAdLMmgIR0CoebIV2zOYdX2UKGgGR8ABn07KaG5+aAdLMmgIR0CofAhnzxwydX2UKGgGR8AAEsBhhH9WaAdLMmgIR0Coe8o5xR2sdX2UKGgGR8AACHj6vaDgaAdLMmgIR0Coe45Wq95AdX2UKGgGR8AFGX5WRzRyaAdLMmgIR0Coe05JCjUNdX2UKGgGR7/5wwfyPMjeaAdLMmgIR0Cofa0b1h9cdX2UKGgGR8AC8jzI3irDaAdLMmgIR0CofW8VpKzzdX2UKGgGR8AC2GTLW7OFaAdLMmgIR0CofTJlJ6IFdX2UKGgGR8AELPBzmwJPaAdLMmgIR0CofPJOWSlndX2UKGgGR8AWZqynk1dgaAdLMmgIR0Cofx+e4Cp4dX2UKGgGR7/9Uc0cfeUIaAdLMmgIR0CofuD1f3N+dX2UKGgGR8AYmLS/j81oaAdLMmgIR0CofqPP1L8KdX2UKGgGR8AHWOp84PwvaAdLMmgIR0CofmMCtA9ndX2UKGgGR8AM+HzpX6qLaAdLMmgIR0CogBNfPX05dX2UKGgGR8AcISZjQRf4aAdLMmgIR0Cof9Sc9W6tdX2UKGgGR8AAUjJMg2ZRaAdLMmgIR0Cof5dq1w5vdX2UKGgGR7/7LXQMQVbiaAdLMmgIR0Cof1Z5iVjadX2UKGgGR8AA8CzTnaFmaAdLMmgIR0CogQalUIcBdX2UKGgGR7/5xAKOT7l8aAdLMmgIR0CogMfnGKhtdX2UKGgGR8ACY3gk1MufaAdLMmgIR0CogIqslsxgdX2UKGgGR8AFEfms/6fraAdLMmgIR0CogEm+9Jz1dX2UKGgGR8AJzqB3A2ycaAdLMmgIR0CogffffoA5dX2UKGgGR8ADENe+mFajaAdLMmgIR0CogblC9h7WdX2UKGgGR8AHjy8SPEKmaAdLMmgIR0CogXv/io87dX2UKGgGR8AAqKk2xY7raAdLMmgIR0CogTsaCL/CdX2UKGgGR8AAZYvFm4AkaAdLMmgIR0CogunUUfxMdX2UKGgGR8AJrVz6rNnoaAdLMmgIR0Cogqus1baAdX2UKGgGR8ALSsCDEm6YaAdLMmgIR0Cogm8rqdH2dX2UKGgGR8ADBSpBHCoCaAdLMmgIR0Cogi7di2DydX2UKGgGR8ADt1MdtEXtaAdLMmgIR0Cog9sfigkDdX2UKGgGR8ACJe5WilBQaAdLMmgIR0Cog5xTCLuQdX2UKGgGR7/+5CngpBomaAdLMmgIR0Cog18sMAmzdX2UKGgGR7//umaYu01JaAdLMmgIR0Cogx5BcAzYdX2UKGgGR8ACTmQr+YMOaAdLMmgIR0CohNeFL39KdX2UKGgGR8AA5V+7UXpGaAdLMmgIR0CohJk/SpirdX2UKGgGR8ANhDArQPZqaAdLMmgIR0CohFw7T2FndX2UKGgGR8ABQfW+XZ5BaAdLMmgIR0CohBtcv/R3dX2UKGgGR8ANWz8gpz91aAdLMmgIR0Cohdlotcv/dX2UKGgGR8ACgemvW6K+aAdLMmgIR0CohZqwyIpIdX2UKGgGR8AB6bYsd1dPaAdLMmgIR0CohV1wo9cKdX2UKGgGR8AM6v7m+0w8aAdLMmgIR0CohRywGGEgdX2UKGgGR7/+420iQkonaAdLMmgIR0CohtvLPldUdX2UKGgGR8AMiLAHmig1aAdLMmgIR0Cohp1d5Y5ldX2UKGgGR8AWrp5eJHiFaAdLMmgIR0CohmA+Y+jedX2UKGgGR8ANe3UhFEy+aAdLMmgIR0Cohh9k8RthdX2UKGgGR8AHwBtDUmUoaAdLMmgIR0Coh8m0mdAgdX2UKGgGR7/6zySV4X41aAdLMmgIR0Coh4rpJPIodX2UKGgGR8AOtvhqCYkWaAdLMmgIR0Coh02xptaZdX2UKGgGR8AQQ+Y+jdpJaAdLMmgIR0CohwzO5avBdX2UKGgGR8AGTtZ3cHnmaAdLMmgIR0CoiMmVAzHkdX2UKGgGR8ADcju8brC4aAdLMmgIR0CoiIrLQokSdX2UKGgGR8AarNwBHTZyaAdLMmgIR0CoiE2r4nF6dX2UKGgGR8AZUlzEJjUeaAdLMmgIR0CoiAzD4xk/dX2UKGgGR7/+7qptJnQIaAdLMmgIR0CoibzLGJemdX2UKGgGR8AHy4Ds+mm+aAdLMmgIR0CoiX5CWu5jdX2UKGgGR8AQ62SdOIqLaAdLMmgIR0CoiUEH+qBFdX2UKGgGR8AEvsTnJT2naAdLMmgIR0CoiQAzP8htdX2UKGgGR8ADFW6shgVoaAdLMmgIR0Coiq7v5P/JdX2UKGgGR8AQxoh6jWTYaAdLMmgIR0CoinA8SwnqdX2UKGgGR8ASpnqVyFPBaAdLMmgIR0CoijMJpnHvdX2UKGgGR8AI6ckMTewcaAdLMmgIR0CoifIi1RcedX2UKGgGR8AGWM85jpcHaAdLMmgIR0Coi5gnMMZxdX2UKGgGR8AN4593KSxJaAdLMmgIR0Coi1mjCYTkdX2UKGgGR8AO/r0J4SpSaAdLMmgIR0CoixxxtHhCdX2UKGgGR8AKoOx0MgEEaAdLMmgIR0CoituLaVUudX2UKGgGR8AKW3fAKv3baAdLMmgIR0CojIUkWykcdX2UKGgGR8AEn0Gu9vjwaAdLMmgIR0CojEZH/cWTdX2UKGgGR7//zxoZhrnDaAdLMmgIR0CojAkCmuTzdX2UKGgGR8AQHVQQ+UyIaAdLMmgIR0Coi8gG8mKJdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b91603595bf21e88778ace0bf30a79c39935c607f9c2d15f88861c4aec9aaa89
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e5d462cc043eb058288496f243de07776a54c641ee8a294537a38c6accdd9be
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d47a0211e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d47a021ad80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689682300391050329, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbvTTPpjhc72moBU/bvTTPpjhc72moBU/bvTTPpjhc72moBU/bvTTPpjhc72moBU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJKTJP15xoz8Gido/vcLhvhvsPr9axdy+7/bUPsfAFD0/vby+ldDsPtyhqb+M6q6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABu9NM+mOFzvaagFT/yZd2749KAuxJuwbpu9NM+mOFzvaagFT/yZd2749KAuxJuwbpu9NM+mOFzvaagFT/yZd2749KAuxJuwbpu9NM+mOFzvaagFT/yZd2749KAuxJuwbqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41397423 -0.05954131 0.58448255]\n [ 0.41397423 -0.05954131 0.58448255]\n [ 0.41397423 -0.05954131 0.58448255]\n [ 0.41397423 -0.05954131 0.58448255]]", "desired_goal": "[[ 1.5753217 1.2768972 1.7073066 ]\n [-0.44093886 -0.7457902 -0.43119317]\n [ 0.41594645 0.03631666 -0.36863133]\n [ 0.46252885 -1.325252 -1.3665328 ]]", "observation": "[[ 0.41397423 -0.05954131 0.58448255 -0.00675654 -0.00393139 -0.00147575]\n [ 0.41397423 -0.05954131 0.58448255 -0.00675654 -0.00393139 -0.00147575]\n [ 0.41397423 -0.05954131 0.58448255 -0.00675654 -0.00393139 -0.00147575]\n [ 0.41397423 -0.05954131 0.58448255 -0.00675654 -0.00393139 -0.00147575]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAf8sKPtdd7T0C03s99zORPQVv3b1q5IA+X8ufPGF15T2qw4w+uSEYvvh0ET5dWII+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1355419 0.11590164 0.06148053]\n [ 0.0708999 -0.10812191 0.25174266]\n [ 0.01950615 0.11204029 0.2749303 ]\n [-0.14856614 0.14204776 0.2545804 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwALItcv/R3OMAWyUSzKMAXSUR0CocIanivPkdX2UKGgGR8AEGnO0LMLXaAdLMmgIR0CocEgB91EFdX2UKGgGR7/+FmBe5WilaAdLMmgIR0CocArIo3JgdX2UKGgGR8ADh5HEuQIVaAdLMmgIR0Cob8nP/rB1dX2UKGgGR8ABicCo0hvBaAdLMmgIR0CocWxL0z0pdX2UKGgGR8AOuwiaAnUlaAdLMmgIR0CocS2OQyRCdX2UKGgGR8AHLhtLteD4aAdLMmgIR0CocPBVENONdX2UKGgGR8AVF/rjYI0JaAdLMmgIR0CocK9rftQbdX2UKGgGR8ADUtGus90SaAdLMmgIR0CoclXJxNqQdX2UKGgGR8ACZfpljEvTaAdLMmgIR0CochcA7xNJdX2UKGgGR8ABhM+NcW0raAdLMmgIR0CocdnnuAqedX2UKGgGR8AWFmRNh3JQaAdLMmgIR0CocZklVtGedX2UKGgGR8AEO5c1O0swaAdLMmgIR0Coc7b961LKdX2UKGgGR8AWVDw6QvHtaAdLMmgIR0Coc3jRlYlqdX2UKGgGR8ARRfzBhx5taAdLMmgIR0CoczwqiGnGdX2UKGgGR8AV6e+VTrE+aAdLMmgIR0CocvvugHu7dX2UKGgGR8AOm+49X9zfaAdLMmgIR0CodVKw6hg3dX2UKGgGR8AUKquKXOW0aAdLMmgIR0CodRUUfxMGdX2UKGgGR8AB2QIUrTYvaAdLMmgIR0CodNiBwuM/dX2UKGgGR8ADCQxN7BwdaAdLMmgIR0CodJgxzq8ldX2UKGgGR8AC+oDPnjhlaAdLMmgIR0Codvyhi9ZidX2UKGgGR7/8S+UQkHD8aAdLMmgIR0Codr6V+qiodX2UKGgGR8AFUoOQQtjDaAdLMmgIR0CodoIlD4QCdX2UKGgGR8ADeFWXC0ngaAdLMmgIR0CodkHrIHTrdX2UKGgGR8ASrAbhm5DraAdLMmgIR0CoeK86FM7EdX2UKGgGR8AUyBVdX1aoaAdLMmgIR0CoeHFBppN9dX2UKGgGR8ACGTX8O09haAdLMmgIR0CoeDTGgi/xdX2UKGgGR8AG70Yj0L+haAdLMmgIR0Cod/TmW+oMdX2UKGgGR8ANwyylenhsaAdLMmgIR0Coemzqjaf0dX2UKGgGR8AWAvVVghKUaAdLMmgIR0Coei79Q40edX2UKGgGR8AFKBun/DLsaAdLMmgIR0CoefJo0ygxdX2UKGgGR8AHUujASFoMaAdLMmgIR0CoebIV2zOYdX2UKGgGR8ABn07KaG5+aAdLMmgIR0CofAhnzxwydX2UKGgGR8AAEsBhhH9WaAdLMmgIR0Coe8o5xR2sdX2UKGgGR8AACHj6vaDgaAdLMmgIR0Coe45Wq95AdX2UKGgGR8AFGX5WRzRyaAdLMmgIR0Coe05JCjUNdX2UKGgGR7/5wwfyPMjeaAdLMmgIR0Cofa0b1h9cdX2UKGgGR8AC8jzI3irDaAdLMmgIR0CofW8VpKzzdX2UKGgGR8AC2GTLW7OFaAdLMmgIR0CofTJlJ6IFdX2UKGgGR8AELPBzmwJPaAdLMmgIR0CofPJOWSlndX2UKGgGR8AWZqynk1dgaAdLMmgIR0Cofx+e4Cp4dX2UKGgGR7/9Uc0cfeUIaAdLMmgIR0CofuD1f3N+dX2UKGgGR8AYmLS/j81oaAdLMmgIR0CofqPP1L8KdX2UKGgGR8AHWOp84PwvaAdLMmgIR0CofmMCtA9ndX2UKGgGR8AM+HzpX6qLaAdLMmgIR0CogBNfPX05dX2UKGgGR8AcISZjQRf4aAdLMmgIR0Cof9Sc9W6tdX2UKGgGR8AAUjJMg2ZRaAdLMmgIR0Cof5dq1w5vdX2UKGgGR7/7LXQMQVbiaAdLMmgIR0Cof1Z5iVjadX2UKGgGR8AA8CzTnaFmaAdLMmgIR0CogQalUIcBdX2UKGgGR7/5xAKOT7l8aAdLMmgIR0CogMfnGKhtdX2UKGgGR8ACY3gk1MufaAdLMmgIR0CogIqslsxgdX2UKGgGR8AFEfms/6fraAdLMmgIR0CogEm+9Jz1dX2UKGgGR8AJzqB3A2ycaAdLMmgIR0CogffffoA5dX2UKGgGR8ADENe+mFajaAdLMmgIR0CogblC9h7WdX2UKGgGR8AHjy8SPEKmaAdLMmgIR0CogXv/io87dX2UKGgGR8AAqKk2xY7raAdLMmgIR0CogTsaCL/CdX2UKGgGR8AAZYvFm4AkaAdLMmgIR0CogunUUfxMdX2UKGgGR8AJrVz6rNnoaAdLMmgIR0Cogqus1baAdX2UKGgGR8ALSsCDEm6YaAdLMmgIR0Cogm8rqdH2dX2UKGgGR8ADBSpBHCoCaAdLMmgIR0Cogi7di2DydX2UKGgGR8ADt1MdtEXtaAdLMmgIR0Cog9sfigkDdX2UKGgGR8ACJe5WilBQaAdLMmgIR0Cog5xTCLuQdX2UKGgGR7/+5CngpBomaAdLMmgIR0Cog18sMAmzdX2UKGgGR7//umaYu01JaAdLMmgIR0Cogx5BcAzYdX2UKGgGR8ACTmQr+YMOaAdLMmgIR0CohNeFL39KdX2UKGgGR8AA5V+7UXpGaAdLMmgIR0CohJk/SpirdX2UKGgGR8ANhDArQPZqaAdLMmgIR0CohFw7T2FndX2UKGgGR8ABQfW+XZ5BaAdLMmgIR0CohBtcv/R3dX2UKGgGR8ANWz8gpz91aAdLMmgIR0Cohdlotcv/dX2UKGgGR8ACgemvW6K+aAdLMmgIR0CohZqwyIpIdX2UKGgGR8AB6bYsd1dPaAdLMmgIR0CohV1wo9cKdX2UKGgGR8AM6v7m+0w8aAdLMmgIR0CohRywGGEgdX2UKGgGR7/+420iQkonaAdLMmgIR0CohtvLPldUdX2UKGgGR8AMiLAHmig1aAdLMmgIR0Cohp1d5Y5ldX2UKGgGR8AWrp5eJHiFaAdLMmgIR0CohmA+Y+jedX2UKGgGR8ANe3UhFEy+aAdLMmgIR0Cohh9k8RthdX2UKGgGR8AHwBtDUmUoaAdLMmgIR0Coh8m0mdAgdX2UKGgGR7/6zySV4X41aAdLMmgIR0Coh4rpJPIodX2UKGgGR8AOtvhqCYkWaAdLMmgIR0Coh02xptaZdX2UKGgGR8AQQ+Y+jdpJaAdLMmgIR0CohwzO5avBdX2UKGgGR8AGTtZ3cHnmaAdLMmgIR0CoiMmVAzHkdX2UKGgGR8ADcju8brC4aAdLMmgIR0CoiIrLQokSdX2UKGgGR8AarNwBHTZyaAdLMmgIR0CoiE2r4nF6dX2UKGgGR8AZUlzEJjUeaAdLMmgIR0CoiAzD4xk/dX2UKGgGR7/+7qptJnQIaAdLMmgIR0CoibzLGJemdX2UKGgGR8AHy4Ds+mm+aAdLMmgIR0CoiX5CWu5jdX2UKGgGR8AQ62SdOIqLaAdLMmgIR0CoiUEH+qBFdX2UKGgGR8AEvsTnJT2naAdLMmgIR0CoiQAzP8htdX2UKGgGR8ADFW6shgVoaAdLMmgIR0Coiq7v5P/JdX2UKGgGR8AQxoh6jWTYaAdLMmgIR0CoinA8SwnqdX2UKGgGR8ASpnqVyFPBaAdLMmgIR0CoijMJpnHvdX2UKGgGR8AI6ckMTewcaAdLMmgIR0CoifIi1RcedX2UKGgGR8AGWM85jpcHaAdLMmgIR0Coi5gnMMZxdX2UKGgGR8AN4593KSxJaAdLMmgIR0Coi1mjCYTkdX2UKGgGR8AO/r0J4SpSaAdLMmgIR0CoixxxtHhCdX2UKGgGR8AKoOx0MgEEaAdLMmgIR0CoituLaVUudX2UKGgGR8AKW3fAKv3baAdLMmgIR0CojIUkWykcdX2UKGgGR8AEn0Gu9vjwaAdLMmgIR0CojEZH/cWTdX2UKGgGR7//zxoZhrnDaAdLMmgIR0CojAkCmuTzdX2UKGgGR8AQHVQQ+UyIaAdLMmgIR0Coi8gG8mKJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.411803745478392, "std_reward": 0.5957742203343585, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-18T13:04:35.784389"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3fdc58cf87db2d1252c2170ea6eaa3df69b3bbcec49c0b4f385a734a064e4f7
3
+ size 2613