File size: 10,162 Bytes
c06a2fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8e2268
 
 
 
 
 
 
 
 
 
c06a2fa
 
d8e2268
c06a2fa
d8e2268
c06a2fa
 
 
 
 
 
 
d8e2268
c06a2fa
 
 
d8e2268
c06a2fa
 
 
d8e2268
c06a2fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for Music Audio Efficient Spectrogram Transformer.
"""


from typing import List, Optional, Union

import numpy as np
import torch

from transformers.audio_utils import mel_filter_bank, spectrogram, window_function
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.utils import TensorType, logging


logger = logging.get_logger(__name__)


class MAESTFeatureExtractor(SequenceFeatureExtractor):
    r"""
    Constructs a Music Audio Efficient Spectrogram Transformer (MAEST) feature extractor.

    This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
    most of the main methods. Users should refer to this superclass for more information regarding those methods.

    This class extracts mel-filter bank features from raw audio, pads/truncates them to a fixed length and normalizes
    them using a mean and standard deviation.

    Args:
        feature_size (`int`, *optional*, defaults to 1):
            The feature dimension of the extracted features.
        sampling_rate (`int`, *optional*, defaults to 16000):
            The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
        num_mel_bins (`int`, *optional*, defaults to 96):
            Number of Mel-frequency bins.
        max_length (`int`, *optional*, defaults to 1876):
            Maximum length to which to pad/truncate the extracted features. Set to -1 to deactivate the functionallity.
        padding_value (`int`, *optional*, defaults to 0.0):
            The value used to pad the input waveform.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether or not to normalize the log-Mel features using `mean` and `std`.
        mean (`float`, *optional*, defaults to 2.06755686098554):
            The mean value used to normalize the log-Mel features. Uses the Discogs20 mean by default.
        std (`float`, *optional*, defaults to 1.268292820667291):
            The standard deviation value used to normalize the log-Mel features. Uses the Discogs20 standard deviation
            by default.
        return_attention_mask (`bool`, *optional*, defaults to `False`):
            Whether or not [`~ASTFeatureExtractor.__call__`] should return `attention_mask`.
        n_fft (`int`, *optional*, defaults to 512):
            Length of the FFT window.
        hop_length (`int`, *optional*, defaults to 256):
            Number of samples between successive frames.
        log_compression (`str`, *optional*, defaults to `"logC"`):
            Type of log compression to apply to the mel-spectrogram. Can be one of [`None`, `log`, `logC`].
    """

    model_input_names = ["input_values", "attention_mask"]

    def __init__(
        self,
        feature_size=1,
        sampling_rate=16000,
        num_mel_bins=96,
        max_length=1876,
        padding_value=0.0,
        do_normalize=True,
        mean=2.06755686098554,
        std=1.268292820667291,
        return_attention_mask=False,
        n_fft=512,
        hop_length=256,
        log_compression="logC",
        **kwargs,
    ):
        super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
        self.sampling_rate = sampling_rate
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.log_compression = log_compression
        self.num_mel_bins = num_mel_bins
        self.max_length = max_length
        self.do_normalize = do_normalize
        self.mean = mean
        self.std = std
        self.return_attention_mask = return_attention_mask

    def _extract_fbank_features(
        self,
        waveform: np.ndarray,
        max_length: int,
    ) -> np.ndarray:
        """
        Get mel-spectrogram features using audio_utils.
        """

        window = window_function(
            window_length=self.n_fft,
            name="hann",
        )

        mel_fb = mel_filter_bank(
            num_frequency_bins=self.n_fft // 2 + 1,
            num_mel_filters=self.num_mel_bins,
            min_frequency=0,
            max_frequency=self.sampling_rate / 2,
            sampling_rate=self.sampling_rate,
            norm="slaney",
            mel_scale="slaney",
        )

        melspec = spectrogram(
            waveform,
            window=window,
            frame_length=self.n_fft,
            hop_length=self.hop_length,
            power=2,
            mel_filters=mel_fb,
            min_value=1e-30,
            mel_floor=1e-30,
            pad_mode="constant",
        ).T

        if not self.log_compression:
            pass
        elif self.log_compression == "log":
            melspec = np.log(melspec + np.finfo(float).eps)
        elif self.log_compression == "logC":
            melspec = np.log10(1 + melspec * 10000)
        else:
            raise ValueError(
                f"`log_compression` can only be one of [None, 'log', 'logC'], but got: {self.log_compression}"
            )

        melspec = torch.Tensor(melspec)
        n_frames = melspec.shape[0]

        if max_length > 0:
            difference = max_length - n_frames

            # pad or truncate, depending on difference
            if difference > 0:
                pad_module = torch.nn.ZeroPad2d((0, 0, 0, difference))
                melspec = pad_module(melspec)
            elif difference < 0:
                melspec = melspec[0:max_length, :]

        return melspec.numpy()

    def normalize(self, input_values: np.ndarray) -> np.ndarray:
        return (input_values - (self.mean)) / (self.std * 2)

    def __call__(
        self,
        raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
        sampling_rate: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        **kwargs,
    ) -> BatchFeature:
        """
        Main method to featurize and prepare for the model one or several sequence(s).

        Args:
            raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
                The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
                values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
                stereo, i.e. single float per timestep.
            sampling_rate (`int`, *optional*):
                The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
                `sampling_rate` at the forward call to prevent silent errors.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
        """

        if sampling_rate is not None:
            if sampling_rate != self.sampling_rate:
                raise ValueError(
                    f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
                    f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
                    f" {self.sampling_rate} and not {sampling_rate}."
                )
        else:
            logger.warning(
                "It is strongly recommended to pass the `sampling_rate` argument to this function. "
                "Failing to do so can result in silent errors that might be hard to debug."
            )

        is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
        if is_batched_numpy and len(raw_speech.shape) > 2:
            raise ValueError(f"Only mono-channel audio is supported for input to {self}")
        is_batched = is_batched_numpy or (
            isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
        )

        if is_batched:
            raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
        elif not is_batched and not isinstance(raw_speech, np.ndarray):
            raw_speech = np.asarray(raw_speech, dtype=np.float32)
        elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
            raw_speech = raw_speech.astype(np.float32)

        # always return batch
        if not is_batched:
            raw_speech = [raw_speech]

        # extract fbank features and pad/truncate to max_length
        features = [self._extract_fbank_features(waveform, max_length=self.max_length) for waveform in raw_speech]

        # convert into BatchFeature
        padded_inputs = BatchFeature({"input_values": features})

        # make sure list is in array format
        input_values = padded_inputs.get("input_values")
        if isinstance(input_values[0], list):
            padded_inputs["input_values"] = [np.asarray(feature, dtype=np.float32) for feature in input_values]

        # normalization
        if self.do_normalize:
            padded_inputs["input_values"] = [self.normalize(feature) for feature in input_values]

        if return_tensors is not None:
            padded_inputs = padded_inputs.convert_to_tensors(return_tensors)

        return padded_inputs