Edit model card

Model Summery

MobileLLaMA-2.7B-Base is a Transformer with 2.7B billon paramters. We downscale LLaMA to facilitate the off-the-shelf deployment. To make our work reproducible, all the models are trained on 1.3T tokens from the RedPajama v1 dataset only. This benefits further research by enabling controlled experiments.

We extensively assess our models on two standard natural language benchmarks, for language understanding and common sense reasoning respectively. Experimental results show that our MobileLLaMA is on par with the most recent opensource models. MobileLLaMA 2.7B also demonstrates competitive performance to INCITE 3B (V1) and OpenLLaMA 3B (V1), while being about 40% faster than OpenLLaMA 3B on a Snapdragon 888 CPU as shown in our paper Table 5.

Model Sources

How to Get Started with the Model

Model weights can be loaded with Hugging Face Transformers. Examples can be found at Github.

Datasets and Training

For our training details, please refer to our paper in section 4.1: MobileVLM: A Fast, Strong and Open Vision Language Assistant for Mobile Devices.

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mtgv/MobileLLaMA-2.7B-Base