File size: 2,394 Bytes
a97a61a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- nergrit
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-finetuned-ner-nergrit-8H-light
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: nergrit
type: nergrit
config: nergrit_ner_seacrowd_seq_label
split: validation
args: nergrit_ner_seacrowd_seq_label
metrics:
- name: Precision
type: precision
value: 0.981006671007531
- name: Recall
type: recall
value: 0.9810548818694482
- name: F1
type: f1
value: 0.9810307758461823
- name: Accuracy
type: accuracy
value: 0.9772770466099682
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-finetuned-ner-nergrit-8H-light
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the nergrit dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1130
- Precision: 0.9810
- Recall: 0.9811
- F1: 0.9810
- Accuracy: 0.9773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.9994 | 392 | 0.1196 | 0.9793 | 0.9800 | 0.9796 | 0.9757 |
| 0.1919 | 1.9987 | 784 | 0.1048 | 0.9810 | 0.9814 | 0.9812 | 0.9775 |
| 0.0823 | 2.9981 | 1176 | 0.1130 | 0.9810 | 0.9811 | 0.9810 | 0.9773 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|