--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - nergrit metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-finetuned-ner-nergrit-9H results: - task: name: Token Classification type: token-classification dataset: name: nergrit type: nergrit config: nergrit_ner_seacrowd_seq_label split: test args: nergrit_ner_seacrowd_seq_label metrics: - name: Precision type: precision value: 0.9333290962247363 - name: Recall type: recall value: 0.9402010371982842 - name: F1 type: f1 value: 0.9367524638790548 - name: Accuracy type: accuracy value: 0.9811414616497829 --- # roberta-finetuned-ner-nergrit-9H This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the nergrit dataset. It achieves the following results on the evaluation set: - Loss: 0.0982 - Precision: 0.9333 - Recall: 0.9402 - F1: 0.9368 - Accuracy: 0.9811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9995 | 471 | 0.0979 | 0.9354 | 0.9229 | 0.9291 | 0.9795 | | 0.2005 | 1.9989 | 942 | 0.0967 | 0.9376 | 0.9356 | 0.9366 | 0.9811 | | 0.0863 | 2.9984 | 1413 | 0.0982 | 0.9333 | 0.9402 | 0.9368 | 0.9811 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1