--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: fine-tuned-QAS-Squad_2-with-xlm-roberta-large results: [] --- # fine-tuned-QAS-Squad_2-with-xlm-roberta-large This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8615 - Exact Match: 69.2340 - F1: 82.5542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:| | 1.0967 | 0.5 | 464 | 1.0076 | 57.8908 | 71.8971 | | 0.912 | 1.0 | 928 | 0.8118 | 65.0306 | 79.0193 | | 0.8071 | 1.5 | 1392 | 0.7587 | 67.2288 | 80.3986 | | 0.7414 | 2.0 | 1856 | 0.7322 | 68.3614 | 81.3949 | | 0.6548 | 2.5 | 2320 | 0.7685 | 67.5896 | 81.3012 | | 0.624 | 3.0 | 2784 | 0.7307 | 68.5544 | 82.0875 | | 0.5412 | 3.5 | 3248 | 0.7606 | 69.2340 | 82.4384 | | 0.5356 | 4.0 | 3712 | 0.7352 | 69.5612 | 82.7509 | | 0.4463 | 4.5 | 4176 | 0.7862 | 69.2843 | 82.3298 | | 0.4899 | 5.0 | 4640 | 0.7868 | 69.5109 | 82.7397 | | 0.417 | 5.5 | 5104 | 0.8615 | 69.2340 | 82.5542 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2