update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wikiann
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: bert-base-uncased-tajik-ner
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: wikiann
|
20 |
+
type: wikiann
|
21 |
+
config: tg
|
22 |
+
split: train+test
|
23 |
+
args: tg
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.5042016806722689
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.5769230769230769
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.5381165919282511
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.848129958443521
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# bert-base-uncased-tajik-ner
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the wikiann dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 1.2137
|
47 |
+
- Precision: 0.5042
|
48 |
+
- Recall: 0.5769
|
49 |
+
- F1: 0.5381
|
50 |
+
- Accuracy: 0.8481
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 8
|
71 |
+
- eval_batch_size: 8
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 200
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 2.0 | 50 | 0.9499 | 0.0450 | 0.0962 | 0.0613 | 0.6626 |
|
82 |
+
| No log | 4.0 | 100 | 0.7348 | 0.1549 | 0.2115 | 0.1789 | 0.7401 |
|
83 |
+
| No log | 6.0 | 150 | 0.6685 | 0.1916 | 0.3077 | 0.2362 | 0.8017 |
|
84 |
+
| No log | 8.0 | 200 | 0.7875 | 0.3923 | 0.4904 | 0.4359 | 0.8036 |
|
85 |
+
| No log | 10.0 | 250 | 0.7495 | 0.4225 | 0.5769 | 0.4878 | 0.8274 |
|
86 |
+
| No log | 12.0 | 300 | 0.8934 | 0.4198 | 0.5288 | 0.4681 | 0.8085 |
|
87 |
+
| No log | 14.0 | 350 | 0.9455 | 0.4758 | 0.5673 | 0.5175 | 0.8236 |
|
88 |
+
| No log | 16.0 | 400 | 0.9469 | 0.5893 | 0.6346 | 0.6111 | 0.8410 |
|
89 |
+
| No log | 18.0 | 450 | 0.9936 | 0.5333 | 0.6154 | 0.5714 | 0.8485 |
|
90 |
+
| 0.2726 | 20.0 | 500 | 0.9804 | 0.5 | 0.6058 | 0.5478 | 0.8519 |
|
91 |
+
| 0.2726 | 22.0 | 550 | 1.1035 | 0.5963 | 0.625 | 0.6103 | 0.8432 |
|
92 |
+
| 0.2726 | 24.0 | 600 | 1.0318 | 0.5856 | 0.625 | 0.6047 | 0.8576 |
|
93 |
+
| 0.2726 | 26.0 | 650 | 1.1820 | 0.4921 | 0.5962 | 0.5391 | 0.8221 |
|
94 |
+
| 0.2726 | 28.0 | 700 | 1.1204 | 0.4878 | 0.5769 | 0.5286 | 0.8311 |
|
95 |
+
| 0.2726 | 30.0 | 750 | 1.1911 | 0.5357 | 0.5769 | 0.5556 | 0.8376 |
|
96 |
+
| 0.2726 | 32.0 | 800 | 1.1747 | 0.5259 | 0.5865 | 0.5545 | 0.8394 |
|
97 |
+
| 0.2726 | 34.0 | 850 | 1.1403 | 0.5872 | 0.6154 | 0.6009 | 0.8542 |
|
98 |
+
| 0.2726 | 36.0 | 900 | 1.1824 | 0.5370 | 0.5577 | 0.5472 | 0.8330 |
|
99 |
+
| 0.2726 | 38.0 | 950 | 1.1467 | 0.5424 | 0.6154 | 0.5766 | 0.8440 |
|
100 |
+
| 0.003 | 40.0 | 1000 | 1.2148 | 0.5268 | 0.5673 | 0.5463 | 0.8360 |
|
101 |
+
| 0.003 | 42.0 | 1050 | 1.3478 | 0.5273 | 0.5577 | 0.5421 | 0.8266 |
|
102 |
+
| 0.003 | 44.0 | 1100 | 1.2137 | 0.5042 | 0.5769 | 0.5381 | 0.8481 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.21.2
|
108 |
+
- Pytorch 1.12.1+cu113
|
109 |
+
- Datasets 2.4.0
|
110 |
+
- Tokenizers 0.12.1
|