muhtasham commited on
Commit
3370480
1 Parent(s): 3e900f1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikiann
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-base-uncased-tajik-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wikiann
20
+ type: wikiann
21
+ config: tg
22
+ split: train+test
23
+ args: tg
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.5042016806722689
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.5769230769230769
31
+ - name: F1
32
+ type: f1
33
+ value: 0.5381165919282511
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.848129958443521
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # bert-base-uncased-tajik-ner
43
+
44
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the wikiann dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 1.2137
47
+ - Precision: 0.5042
48
+ - Recall: 0.5769
49
+ - F1: 0.5381
50
+ - Accuracy: 0.8481
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 200
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 2.0 | 50 | 0.9499 | 0.0450 | 0.0962 | 0.0613 | 0.6626 |
82
+ | No log | 4.0 | 100 | 0.7348 | 0.1549 | 0.2115 | 0.1789 | 0.7401 |
83
+ | No log | 6.0 | 150 | 0.6685 | 0.1916 | 0.3077 | 0.2362 | 0.8017 |
84
+ | No log | 8.0 | 200 | 0.7875 | 0.3923 | 0.4904 | 0.4359 | 0.8036 |
85
+ | No log | 10.0 | 250 | 0.7495 | 0.4225 | 0.5769 | 0.4878 | 0.8274 |
86
+ | No log | 12.0 | 300 | 0.8934 | 0.4198 | 0.5288 | 0.4681 | 0.8085 |
87
+ | No log | 14.0 | 350 | 0.9455 | 0.4758 | 0.5673 | 0.5175 | 0.8236 |
88
+ | No log | 16.0 | 400 | 0.9469 | 0.5893 | 0.6346 | 0.6111 | 0.8410 |
89
+ | No log | 18.0 | 450 | 0.9936 | 0.5333 | 0.6154 | 0.5714 | 0.8485 |
90
+ | 0.2726 | 20.0 | 500 | 0.9804 | 0.5 | 0.6058 | 0.5478 | 0.8519 |
91
+ | 0.2726 | 22.0 | 550 | 1.1035 | 0.5963 | 0.625 | 0.6103 | 0.8432 |
92
+ | 0.2726 | 24.0 | 600 | 1.0318 | 0.5856 | 0.625 | 0.6047 | 0.8576 |
93
+ | 0.2726 | 26.0 | 650 | 1.1820 | 0.4921 | 0.5962 | 0.5391 | 0.8221 |
94
+ | 0.2726 | 28.0 | 700 | 1.1204 | 0.4878 | 0.5769 | 0.5286 | 0.8311 |
95
+ | 0.2726 | 30.0 | 750 | 1.1911 | 0.5357 | 0.5769 | 0.5556 | 0.8376 |
96
+ | 0.2726 | 32.0 | 800 | 1.1747 | 0.5259 | 0.5865 | 0.5545 | 0.8394 |
97
+ | 0.2726 | 34.0 | 850 | 1.1403 | 0.5872 | 0.6154 | 0.6009 | 0.8542 |
98
+ | 0.2726 | 36.0 | 900 | 1.1824 | 0.5370 | 0.5577 | 0.5472 | 0.8330 |
99
+ | 0.2726 | 38.0 | 950 | 1.1467 | 0.5424 | 0.6154 | 0.5766 | 0.8440 |
100
+ | 0.003 | 40.0 | 1000 | 1.2148 | 0.5268 | 0.5673 | 0.5463 | 0.8360 |
101
+ | 0.003 | 42.0 | 1050 | 1.3478 | 0.5273 | 0.5577 | 0.5421 | 0.8266 |
102
+ | 0.003 | 44.0 | 1100 | 1.2137 | 0.5042 | 0.5769 | 0.5381 | 0.8481 |
103
+
104
+
105
+ ### Framework versions
106
+
107
+ - Transformers 4.21.2
108
+ - Pytorch 1.12.1+cu113
109
+ - Datasets 2.4.0
110
+ - Tokenizers 0.12.1