File size: 8,172 Bytes
70af130
1059643
 
 
 
 
 
70af130
cbc4832
1059643
70af130
 
1059643
 
70af130
1059643
70af130
1059643
 
70af130
 
64870b9
1059643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70af130
 
 
53ebfc0
70af130
 
 
b671411
 
 
70af130
b671411
 
 
 
 
70af130
 
 
 
ffa0c7d
 
6ae4004
e4ce93e
06092d0
70af130
 
 
e4ce93e
7a8ca63
e4ce93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa0c7d
e4ce93e
 
 
 
 
 
 
 
 
 
 
 
 
 
70af130
dab4546
9c91f30
dab4546
6b8e7ea
dab4546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059643
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- transformers
datasets:
- mwitiderrick/OpenPlatypus
base_model: openlm-research/open_llama_3b
inference: true
model_type: llama
prompt_template: '### Instruction:\n

  {prompt}

  ### Response:

  '
created_by: mwitiderrick
pipeline_tag: text-generation
model-index:
- name: mwitiderrick/open_llama_3b_instruct_v_0.2
  results:
  - task:
      type: text-generation
    dataset:
      name: hellaswag
      type: hellaswag
    metrics:
    - type: hellaswag (0-Shot)
      value: 0.4882
      name: hellaswag(0-Shot)
  - task:
      type: text-generation
    dataset:
      name: winogrande
      type: winogrande
    metrics:
    - type: winogrande (0-Shot)
      value: 0.6133
      name: winogrande(0-Shot)
  - task:
      type: text-generation
    dataset:
      name: arc_challenge
      type: arc_challenge
    metrics:
    - type: arc_challenge (0-Shot)
      value: 0.3362
      name: arc_challenge(0-Shot)
    source:
      url: https://huggingface.co/mwitiderrick/open_llama_3b_instruct_v_0.2
      name: open_llama_3b_instruct_v_0.2 model card
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 38.48
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_instruct_v_0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 66.77
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_instruct_v_0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 25.34
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_instruct_v_0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 38.16
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_instruct_v_0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.46
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_instruct_v_0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 1.59
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_instruct_v_0.2
      name: Open LLM Leaderboard
---
# OpenLLaMA Instruct: An Open Reproduction of LLaMA

This is an [OpenLlama model](https://huggingface.co/openlm-research/open_llama_3b) that has been fine-tuned on 1 epoch of the
[Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) dataset.

The modified version of the dataset can be found [here](mwitiderrick/Open-Platypus)
## Prompt Template
```
### Instruction:

{query}

### Response:
<Leave new line for model to respond> 
```
## Usage 
```python
from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline

tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/open_llama_3b_instruct_v_0.2")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/open_llama_3b_instruct_v_0.2")
query = "Provide step-by-step instructions for making a sweet chicken bugger"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=500)
output = text_gen(f"### Instruction:\n{query}\n### Response:\n")
print(output[0]['generated_text'])
"""
### Instruction:
Provide step-by-step instructions for making a sweet chicken bugger
### Response:
Step 1: Gather your ingredients
1. 1/2 cup of sugar
2. 1/2 cup of corn syrup
3. 1/2 cup of water
4. 1/2 cup of vegetable oil
5. 1/2 cup of vanilla extract
6. 1/2 cup of baking soda
7. 1/2 cup of salt
8. 1/2 cup of flour
9. 1/2 cup of milk
10. 1/2 cup of egg whites

Step 2: Mix the ingredients together
1. Combine the sugar, corn syrup, water, vegetable oil, vanilla extract, baking soda, and salt in a large bowl.
2. Whisk together until smooth.
3. Add the flour and mix until combined.
4. Add the milk and egg whites and mix until combined.
5. Pour the mixture into a greased 9x13 inch baking pan.
6. Bake for 30 minutes or until a toothpick inserted into the center comes out clean.

Step 3: Make the chicken bugger
1. Preheat the oven to 350 degrees Fahrenheit.
2. In a large bowl, combine the corn syrup, sugar, and cornstarch.
3. Add the chicken and mix well.
4. Divide the mixture into 12 equal portions and shape each portion into a chicken shape.
5. Place the chicken shapes on a baking sheet lined with parchment paper.
6. Bake for 15 minutes or until the chicken is cooked through.
7. Remove the chicken from the oven and allow to cool for 5 minutes.
8. Using a fork, carefully remove the chicken from the shells and place on a serving platter.
9. Serve with a side of gravy.

Step 4: Make the gravy
1. In a small saucepan, combine the cornstarch and water.
2. Stir until the mixture is smooth and begins to thicken.
3. Add the chicken broth and bring to a boil.
4. Reduce the heat to low and simmer for 10 minutes or until the gravy is
"""
```
## TruthfulQA metrics
```


|  Groups  |Version|Filter|n-shot|  Metric   | Value  |   |Stderr|
|----------|-------|------|-----:|-----------|-------:|---|-----:|
|truthfulqa|N/A    |none  |     0|acc        |  0.3166|±  |0.0012|
|          |       |none  |     0|bleu_max   | 23.7766|±  |0.7660|
|          |       |none  |     0|bleu_acc   |  0.3207|±  |0.0163|
|          |       |none  |     0|bleu_diff  | -7.1853|±  |0.7396|
|          |       |none  |     0|rouge1_max | 48.6534|±  |0.8706|
|          |       |none  |     0|rouge1_acc |  0.2766|±  |0.0157|
|          |       |none  |     0|rouge1_diff| -9.8011|±  |0.7883|
|          |       |none  |     0|rouge2_max | 31.9289|±  |0.9637|
|          |       |none  |     0|rouge2_acc |  0.2399|±  |0.0149|
|          |       |none  |     0|rouge2_diff|-11.3958|±  |0.9220|
|          |       |none  |     0|rougeL_max | 45.4592|±  |0.8754|
|          |       |none  |     0|rougeL_acc |  0.2754|±  |0.0156|
|          |       |none  |     0|rougeL_diff|-10.0740|±  |0.7807|
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mwitiderrick__open_llama_3b_instruct_v_0.2)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |38.97|
|AI2 Reasoning Challenge (25-Shot)|38.48|
|HellaSwag (10-Shot)              |66.77|
|MMLU (5-Shot)                    |25.34|
|TruthfulQA (0-shot)              |38.16|
|Winogrande (5-shot)              |63.46|
|GSM8k (5-shot)                   | 1.59|