--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: test results: - task: name: Token Classification type: token-classification dataset: name: layoutlmv3 type: layoutlmv3 config: InvoiceExtraction split: test args: InvoiceExtraction metrics: - name: Precision type: precision value: 0.9735537190082645 - name: Recall type: recall value: 0.9751655629139073 - name: F1 type: f1 value: 0.9743589743589743 - name: Accuracy type: accuracy value: 0.9924257137308216 --- # test This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0899 - Precision: 0.9736 - Recall: 0.9752 - F1: 0.9744 - Accuracy: 0.9924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.5291 | 100 | 0.4956 | 0.7821 | 0.7724 | 0.7772 | 0.9413 | | No log | 1.0582 | 200 | 0.1802 | 0.9285 | 0.9247 | 0.9266 | 0.9761 | | No log | 1.5873 | 300 | 0.1465 | 0.9334 | 0.9512 | 0.9422 | 0.9841 | | No log | 2.1164 | 400 | 0.1309 | 0.9447 | 0.9611 | 0.9528 | 0.9876 | | 0.3392 | 2.6455 | 500 | 0.1095 | 0.9516 | 0.9594 | 0.9555 | 0.9891 | | 0.3392 | 3.1746 | 600 | 0.1022 | 0.9573 | 0.9652 | 0.9613 | 0.9915 | | 0.3392 | 3.7037 | 700 | 0.1081 | 0.9573 | 0.9661 | 0.9617 | 0.9918 | | 0.3392 | 4.2328 | 800 | 0.0922 | 0.9726 | 0.9694 | 0.9710 | 0.9920 | | 0.3392 | 4.7619 | 900 | 0.0930 | 0.9702 | 0.9702 | 0.9702 | 0.9916 | | 0.0282 | 5.2910 | 1000 | 0.0899 | 0.9736 | 0.9752 | 0.9744 | 0.9924 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3