Initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- dreamvoice/.ipynb_checkpoints/__init__-checkpoint.py +1 -0
- dreamvoice/.ipynb_checkpoints/api-checkpoint.py +295 -0
- dreamvoice/.ipynb_checkpoints/dreamvc-checkpoint.yaml +26 -0
- dreamvoice/__init__.py +1 -0
- dreamvoice/__pycache__/__init__.cpython-310.pyc +0 -0
- dreamvoice/__pycache__/__init__.cpython-311.pyc +0 -0
- dreamvoice/__pycache__/api.cpython-310.pyc +0 -0
- dreamvoice/__pycache__/api.cpython-311.pyc +0 -0
- dreamvoice/api.py +295 -0
- dreamvoice/ckpts/bigvgan_24k/config.json +44 -0
- dreamvoice/ckpts/bigvgan_24k/g_01000000.pt +3 -0
- dreamvoice/ckpts/dreamvc_base.pt +3 -0
- dreamvoice/ckpts/dreamvc_cross.pt +3 -0
- dreamvoice/ckpts/dreamvc_plugin.pt +3 -0
- dreamvoice/ckpts/spk_encoder/pretrained.pt +3 -0
- dreamvoice/dreamvc.yaml +26 -0
- dreamvoice/src/.ipynb_checkpoints/extract_features-checkpoint.py +103 -0
- dreamvoice/src/.ipynb_checkpoints/plugin_wrapper-checkpoint.py +76 -0
- dreamvoice/src/.ipynb_checkpoints/train_plugin-checkpoint.py +0 -0
- dreamvoice/src/.ipynb_checkpoints/train_vc-checkpoint.py +0 -0
- dreamvoice/src/.ipynb_checkpoints/vc_wrapper-checkpoint.py +144 -0
- dreamvoice/src/__pycache__/plugin_wrapper.cpython-310.pyc +0 -0
- dreamvoice/src/__pycache__/plugin_wrapper.cpython-311.pyc +0 -0
- dreamvoice/src/__pycache__/vc_wrapper.cpython-310.pyc +0 -0
- dreamvoice/src/__pycache__/vc_wrapper.cpython-311.pyc +0 -0
- dreamvoice/src/configs/.ipynb_checkpoints/diffvc_base-checkpoint.yaml +47 -0
- dreamvoice/src/configs/.ipynb_checkpoints/diffvc_base_pitch-checkpoint.yaml +34 -0
- dreamvoice/src/configs/.ipynb_checkpoints/diffvc_cross-checkpoint.yaml +45 -0
- dreamvoice/src/configs/.ipynb_checkpoints/diffvc_cross_pitch-checkpoint.yaml +33 -0
- dreamvoice/src/configs/.ipynb_checkpoints/plugin_cross-checkpoint.yaml +39 -0
- dreamvoice/src/configs/diffvc_base.yaml +47 -0
- dreamvoice/src/configs/diffvc_base_pitch.yaml +34 -0
- dreamvoice/src/configs/diffvc_cross.yaml +45 -0
- dreamvoice/src/configs/diffvc_cross_pitch.yaml +33 -0
- dreamvoice/src/configs/plugin_cross.yaml +39 -0
- dreamvoice/src/debug.py +0 -0
- dreamvoice/src/extract_features.py +103 -0
- dreamvoice/src/feats/.ipynb_checkpoints/contentvec-checkpoint.py +42 -0
- dreamvoice/src/feats/.ipynb_checkpoints/contentvec_hf-checkpoint.py +40 -0
- dreamvoice/src/feats/.ipynb_checkpoints/hubert_model-checkpoint.py +24 -0
- dreamvoice/src/feats/.ipynb_checkpoints/test-checkpoint.py +22 -0
- dreamvoice/src/feats/__pycache__/contentvec.cpython-310.pyc +0 -0
- dreamvoice/src/feats/__pycache__/contentvec.cpython-311.pyc +0 -0
- dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-310.pyc +0 -0
- dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-311.pyc +0 -0
- dreamvoice/src/feats/__pycache__/hubert_model.cpython-311.pyc +0 -0
- dreamvoice/src/feats/contentvec.py +42 -0
- dreamvoice/src/feats/contentvec_hf.py +40 -0
- dreamvoice/src/feats/hubert/.gitignore +132 -0
- dreamvoice/src/feats/hubert/LICENSE +21 -0
dreamvoice/.ipynb_checkpoints/__init__-checkpoint.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .api import DreamVoice
|
dreamvoice/.ipynb_checkpoints/api-checkpoint.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import yaml
|
4 |
+
import torch
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
from pathlib import Path
|
9 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
10 |
+
from tqdm import tqdm
|
11 |
+
from .src.vc_wrapper import ReDiffVC, DreamVC
|
12 |
+
from .src.plugin_wrapper import DreamVG
|
13 |
+
from .src.modules.speaker_encoder.encoder import inference as spk_encoder
|
14 |
+
from .src.modules.BigVGAN.inference import load_model as load_vocoder
|
15 |
+
from .src.feats.contentvec_hf import get_content_model, get_content
|
16 |
+
|
17 |
+
|
18 |
+
class DreamVoice:
|
19 |
+
def __init__(self, config='dreamvc.yaml', mode='plugin', device='cuda', chunk_size=16):
|
20 |
+
# Initial setup
|
21 |
+
script_dir = Path(__file__).resolve().parent
|
22 |
+
config_path = script_dir / config
|
23 |
+
|
24 |
+
# Load configuration file
|
25 |
+
with open(config_path, 'r') as fp:
|
26 |
+
self.config = yaml.safe_load(fp)
|
27 |
+
|
28 |
+
self.script_dir = script_dir
|
29 |
+
|
30 |
+
# Ensure all checkpoints are downloaded
|
31 |
+
self._ensure_checkpoints_exist()
|
32 |
+
|
33 |
+
# Initialize attributes
|
34 |
+
self.device = device
|
35 |
+
self.sr = self.config['sample_rate']
|
36 |
+
|
37 |
+
# Load vocoder
|
38 |
+
vocoder_path = script_dir / self.config['vocoder_path']
|
39 |
+
self.hifigan, _ = load_vocoder(vocoder_path, device)
|
40 |
+
self.hifigan.eval()
|
41 |
+
|
42 |
+
# Load content model
|
43 |
+
self.content_model = get_content_model().to(device)
|
44 |
+
|
45 |
+
# Load tokenizer and text encoder
|
46 |
+
lm_path = self.config['lm_path']
|
47 |
+
self.tokenizer = T5Tokenizer.from_pretrained(lm_path)
|
48 |
+
self.text_encoder = T5EncoderModel.from_pretrained(lm_path).to(device).eval()
|
49 |
+
|
50 |
+
# Set mode
|
51 |
+
self.mode = mode
|
52 |
+
if mode == 'plugin':
|
53 |
+
self._init_plugin_mode()
|
54 |
+
elif mode == 'end2end':
|
55 |
+
self._init_end2end_mode()
|
56 |
+
else:
|
57 |
+
raise NotImplementedError("Select mode from 'plugin' and 'end2end'")
|
58 |
+
|
59 |
+
# chunk inputs to 10s clips
|
60 |
+
self.chunk_size = chunk_size * 50
|
61 |
+
|
62 |
+
def _ensure_checkpoints_exist(self):
|
63 |
+
checkpoints = [
|
64 |
+
('vocoder_path', self.config.get('vocoder_url')),
|
65 |
+
('vocoder_config_path', self.config.get('vocoder_config_url')),
|
66 |
+
('speaker_path', self.config.get('speaker_url')),
|
67 |
+
('dreamvc.ckpt_path', self.config.get('dreamvc', {}).get('ckpt_url')),
|
68 |
+
('rediffvc.ckpt_path', self.config.get('rediffvc', {}).get('ckpt_url')),
|
69 |
+
('dreamvg.ckpt_path', self.config.get('dreamvg', {}).get('ckpt_url'))
|
70 |
+
]
|
71 |
+
|
72 |
+
for path_key, url in checkpoints:
|
73 |
+
local_path = self._get_local_path(path_key)
|
74 |
+
if not local_path.exists() and url:
|
75 |
+
print(f"Downloading {path_key} from {url}")
|
76 |
+
self._download_file(url, local_path)
|
77 |
+
|
78 |
+
def _get_local_path(self, path_key):
|
79 |
+
keys = path_key.split('.')
|
80 |
+
local_path = self.config
|
81 |
+
for key in keys:
|
82 |
+
local_path = local_path.get(key, {})
|
83 |
+
return self.script_dir / local_path
|
84 |
+
|
85 |
+
def _download_file(self, url, local_path):
|
86 |
+
try:
|
87 |
+
# Attempt to send a GET request to the URL
|
88 |
+
response = requests.get(url, stream=True)
|
89 |
+
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
90 |
+
except requests.exceptions.RequestException as e:
|
91 |
+
# Log the error for debugging purposes
|
92 |
+
print(f"Error encountered: {e}")
|
93 |
+
|
94 |
+
# Development mode: prompt user for Hugging Face API key
|
95 |
+
user_input = input("Private checkpoint, please request authorization and enter your Hugging Face API key.")
|
96 |
+
self.hf_key = user_input if user_input else None
|
97 |
+
|
98 |
+
# Set headers if an API key is provided
|
99 |
+
headers = {'Authorization': f'Bearer {self.hf_key}'} if self.hf_key else {}
|
100 |
+
|
101 |
+
try:
|
102 |
+
# Attempt to send a GET request with headers in development mode
|
103 |
+
response = requests.get(url, stream=True, headers=headers)
|
104 |
+
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
105 |
+
except requests.exceptions.RequestException as e:
|
106 |
+
# Log the error for debugging purposes
|
107 |
+
print(f"Error encountered in dev mode: {e}")
|
108 |
+
response = None # Handle response accordingly in your code
|
109 |
+
|
110 |
+
local_path.parent.mkdir(parents=True, exist_ok=True)
|
111 |
+
|
112 |
+
total_size = int(response.headers.get('content-length', 0))
|
113 |
+
block_size = 8192
|
114 |
+
t = tqdm(total=total_size, unit='iB', unit_scale=True)
|
115 |
+
|
116 |
+
with open(local_path, 'wb') as f:
|
117 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
118 |
+
t.update(len(chunk))
|
119 |
+
f.write(chunk)
|
120 |
+
t.close()
|
121 |
+
|
122 |
+
def _init_plugin_mode(self):
|
123 |
+
# Initialize ReDiffVC
|
124 |
+
self.dreamvc = ReDiffVC(
|
125 |
+
config_path=self.script_dir / self.config['rediffvc']['config_path'],
|
126 |
+
ckpt_path=self.script_dir / self.config['rediffvc']['ckpt_path'],
|
127 |
+
device=self.device
|
128 |
+
)
|
129 |
+
|
130 |
+
# Initialize DreamVG
|
131 |
+
self.dreamvg = DreamVG(
|
132 |
+
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
133 |
+
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
134 |
+
device=self.device
|
135 |
+
)
|
136 |
+
|
137 |
+
# Load speaker encoder
|
138 |
+
spk_encoder.load_model(self.script_dir / self.config['speaker_path'], self.device)
|
139 |
+
self.spk_encoder = spk_encoder
|
140 |
+
self.spk_embed_cache = None
|
141 |
+
|
142 |
+
def _init_end2end_mode(self):
|
143 |
+
# Initialize DreamVC
|
144 |
+
self.dreamvc = DreamVC(
|
145 |
+
config_path=self.script_dir / self.config['dreamvc']['config_path'],
|
146 |
+
ckpt_path=self.script_dir / self.config['dreamvc']['ckpt_path'],
|
147 |
+
device=self.device
|
148 |
+
)
|
149 |
+
|
150 |
+
def _load_content(self, audio_path):
|
151 |
+
content_audio, _ = librosa.load(audio_path, sr=16000)
|
152 |
+
# Calculate the required length to make it a multiple of 16*160
|
153 |
+
target_length = ((len(content_audio) + 16*160 - 1) // (16*160)) * (16*160)
|
154 |
+
# Pad with zeros if necessary
|
155 |
+
if len(content_audio) < target_length:
|
156 |
+
content_audio = np.pad(content_audio, (0, target_length - len(content_audio)), mode='constant')
|
157 |
+
content_audio = torch.tensor(content_audio).unsqueeze(0).to(self.device)
|
158 |
+
content_clip = get_content(self.content_model, content_audio)
|
159 |
+
return content_clip
|
160 |
+
|
161 |
+
def load_spk_embed(self, emb_path):
|
162 |
+
self.spk_embed_cache = torch.load(emb_path, map_location=self.device)
|
163 |
+
|
164 |
+
def save_spk_embed(self, emb_path):
|
165 |
+
assert self.spk_embed_cache is not None
|
166 |
+
torch.save(self.spk_embed_cache.cpu(), emb_path)
|
167 |
+
|
168 |
+
def save_audio(self, output_path, audio, sr):
|
169 |
+
sf.write(output_path, audio, samplerate=sr)
|
170 |
+
|
171 |
+
@torch.no_grad()
|
172 |
+
def genvc(self, content_audio, prompt,
|
173 |
+
prompt_guidance_scale=3, prompt_guidance_rescale=0.0,
|
174 |
+
prompt_ddim_steps=100, prompt_eta=1, prompt_random_seed=None,
|
175 |
+
vc_guidance_scale=3, vc_guidance_rescale=0.7,
|
176 |
+
vc_ddim_steps=50, vc_eta=1, vc_random_seed=None,
|
177 |
+
):
|
178 |
+
|
179 |
+
content_clip = self._load_content(content_audio)
|
180 |
+
|
181 |
+
text_batch = self.tokenizer(prompt, max_length=32,
|
182 |
+
padding='max_length', truncation=True, return_tensors="pt")
|
183 |
+
text, text_mask = text_batch.input_ids.to(self.device), \
|
184 |
+
text_batch.attention_mask.to(self.device)
|
185 |
+
text = self.text_encoder(input_ids=text, attention_mask=text_mask)[0]
|
186 |
+
|
187 |
+
if self.mode == 'plugin':
|
188 |
+
spk_embed = self.dreamvg.inference([text, text_mask],
|
189 |
+
guidance_scale=prompt_guidance_scale,
|
190 |
+
guidance_rescale=prompt_guidance_rescale,
|
191 |
+
ddim_steps=prompt_ddim_steps, eta=prompt_eta,
|
192 |
+
random_seed=prompt_random_seed)
|
193 |
+
|
194 |
+
B, L, D = content_clip.shape
|
195 |
+
gen_audio_chunks = []
|
196 |
+
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
197 |
+
for i in range(num_chunks):
|
198 |
+
start_idx = i * self.chunk_size
|
199 |
+
end_idx = min((i + 1) * self.chunk_size, L)
|
200 |
+
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
201 |
+
|
202 |
+
gen_audio_chunk = self.dreamvc.inference(
|
203 |
+
spk_embed, content_clip_chunk, None,
|
204 |
+
guidance_scale=vc_guidance_scale,
|
205 |
+
guidance_rescale=vc_guidance_rescale,
|
206 |
+
ddim_steps=vc_ddim_steps,
|
207 |
+
eta=vc_eta,
|
208 |
+
random_seed=vc_random_seed)
|
209 |
+
|
210 |
+
gen_audio_chunks.append(gen_audio_chunk)
|
211 |
+
|
212 |
+
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
213 |
+
|
214 |
+
self.spk_embed_cache = spk_embed
|
215 |
+
|
216 |
+
elif self.mode == 'end2end':
|
217 |
+
B, L, D = content_clip.shape
|
218 |
+
gen_audio_chunks = []
|
219 |
+
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
220 |
+
|
221 |
+
for i in range(num_chunks):
|
222 |
+
start_idx = i * self.chunk_size
|
223 |
+
end_idx = min((i + 1) * self.chunk_size, L)
|
224 |
+
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
225 |
+
|
226 |
+
gen_audio_chunk = self.dreamvc.inference([text, text_mask], content_clip,
|
227 |
+
guidance_scale=prompt_guidance_scale,
|
228 |
+
guidance_rescale=prompt_guidance_rescale,
|
229 |
+
ddim_steps=prompt_ddim_steps,
|
230 |
+
eta=prompt_eta, random_seed=prompt_random_seed)
|
231 |
+
gen_audio_chunks.append(gen_audio_chunk)
|
232 |
+
|
233 |
+
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
234 |
+
|
235 |
+
else:
|
236 |
+
raise NotImplementedError("Select mode from 'plugin' and 'end2end'")
|
237 |
+
|
238 |
+
gen_audio = self.hifigan(gen_audio.squeeze(1))
|
239 |
+
gen_audio = gen_audio.cpu().numpy().squeeze(0).squeeze(0)
|
240 |
+
|
241 |
+
return gen_audio, self.sr
|
242 |
+
|
243 |
+
@torch.no_grad()
|
244 |
+
def simplevc(self, content_audio, speaker_audio=None, use_spk_cache=False,
|
245 |
+
vc_guidance_scale=3, vc_guidance_rescale=0.7,
|
246 |
+
vc_ddim_steps=50, vc_eta=1, vc_random_seed=None,
|
247 |
+
):
|
248 |
+
|
249 |
+
assert self.mode == 'plugin'
|
250 |
+
if speaker_audio is not None:
|
251 |
+
speaker_audio, _ = librosa.load(speaker_audio, sr=16000)
|
252 |
+
speaker_audio = torch.tensor(speaker_audio).unsqueeze(0).to(self.device)
|
253 |
+
spk_embed = spk_encoder.embed_utterance_batch(speaker_audio)
|
254 |
+
self.spk_embed_cache = spk_embed
|
255 |
+
elif use_spk_cache:
|
256 |
+
assert self.spk_embed_cache is not None
|
257 |
+
spk_embed = self.spk_embed_cache
|
258 |
+
else:
|
259 |
+
raise NotImplementedError
|
260 |
+
|
261 |
+
content_clip = self._load_content(content_audio)
|
262 |
+
|
263 |
+
B, L, D = content_clip.shape
|
264 |
+
gen_audio_chunks = []
|
265 |
+
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
266 |
+
for i in range(num_chunks):
|
267 |
+
start_idx = i * self.chunk_size
|
268 |
+
end_idx = min((i + 1) * self.chunk_size, L)
|
269 |
+
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
270 |
+
|
271 |
+
gen_audio_chunk = self.dreamvc.inference(
|
272 |
+
spk_embed, content_clip_chunk, None,
|
273 |
+
guidance_scale=vc_guidance_scale,
|
274 |
+
guidance_rescale=vc_guidance_rescale,
|
275 |
+
ddim_steps=vc_ddim_steps,
|
276 |
+
eta=vc_eta,
|
277 |
+
random_seed=vc_random_seed)
|
278 |
+
|
279 |
+
gen_audio_chunks.append(gen_audio_chunk)
|
280 |
+
|
281 |
+
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
282 |
+
|
283 |
+
gen_audio = self.hifigan(gen_audio.squeeze(1))
|
284 |
+
gen_audio = gen_audio.cpu().numpy().squeeze(0).squeeze(0)
|
285 |
+
|
286 |
+
return gen_audio, self.sr
|
287 |
+
|
288 |
+
|
289 |
+
if __name__ == '__main__':
|
290 |
+
dreamvoice = DreamVoice(config='dreamvc.yaml', mode='plugin', device='cuda')
|
291 |
+
content_audio = 'test.wav'
|
292 |
+
speaker_audio = 'speaker.wav'
|
293 |
+
prompt = 'young female voice, sounds young and cute'
|
294 |
+
gen_audio, sr = dreamvoice.genvc('test.wav', prompt)
|
295 |
+
dreamvoice.save_audio('debug.wav', gen_audio, sr)
|
dreamvoice/.ipynb_checkpoints/dreamvc-checkpoint.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
sample_rate: 24000
|
4 |
+
vocoder_path: 'ckpts/bigvgan_24k/g_01000000.pt'
|
5 |
+
vocoder_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/bigvgan_24k/g_01000000.pt'
|
6 |
+
vocoder_config_path: 'ckpts/bigvgan_24k/config.json'
|
7 |
+
vocoder_config_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/bigvgan_24k/config.json'
|
8 |
+
|
9 |
+
speaker_path: 'ckpts/spk_encoder/pretrained.pt'
|
10 |
+
speaker_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/spk_encoder/pretrained.pt'
|
11 |
+
lm_path: 'google/flan-t5-base'
|
12 |
+
|
13 |
+
dreamvc:
|
14 |
+
config_path: 'src/configs/diffvc_cross.yaml'
|
15 |
+
ckpt_path: 'ckpts/dreamvc_cross.pt'
|
16 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_cross.pt'
|
17 |
+
|
18 |
+
rediffvc:
|
19 |
+
config_path: 'src/configs/diffvc_base.yaml'
|
20 |
+
ckpt_path: 'ckpts/dreamvc_base.pt'
|
21 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_base.pt'
|
22 |
+
|
23 |
+
dreamvg:
|
24 |
+
config_path: 'src/configs/plugin_cross.yaml'
|
25 |
+
ckpt_path: 'ckpts/dreamvc_plugin.pt'
|
26 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_plugin.pt'
|
dreamvoice/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .api import DreamVoice
|
dreamvoice/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (202 Bytes). View file
|
|
dreamvoice/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (225 Bytes). View file
|
|
dreamvoice/__pycache__/api.cpython-310.pyc
ADDED
Binary file (8.05 kB). View file
|
|
dreamvoice/__pycache__/api.cpython-311.pyc
ADDED
Binary file (14.3 kB). View file
|
|
dreamvoice/api.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import yaml
|
4 |
+
import torch
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
from pathlib import Path
|
9 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
10 |
+
from tqdm import tqdm
|
11 |
+
from .src.vc_wrapper import ReDiffVC, DreamVC
|
12 |
+
from .src.plugin_wrapper import DreamVG
|
13 |
+
from .src.modules.speaker_encoder.encoder import inference as spk_encoder
|
14 |
+
from .src.modules.BigVGAN.inference import load_model as load_vocoder
|
15 |
+
from .src.feats.contentvec_hf import get_content_model, get_content
|
16 |
+
|
17 |
+
|
18 |
+
class DreamVoice:
|
19 |
+
def __init__(self, config='dreamvc.yaml', mode='plugin', device='cuda', chunk_size=16):
|
20 |
+
# Initial setup
|
21 |
+
script_dir = Path(__file__).resolve().parent
|
22 |
+
config_path = script_dir / config
|
23 |
+
|
24 |
+
# Load configuration file
|
25 |
+
with open(config_path, 'r') as fp:
|
26 |
+
self.config = yaml.safe_load(fp)
|
27 |
+
|
28 |
+
self.script_dir = script_dir
|
29 |
+
|
30 |
+
# Ensure all checkpoints are downloaded
|
31 |
+
self._ensure_checkpoints_exist()
|
32 |
+
|
33 |
+
# Initialize attributes
|
34 |
+
self.device = device
|
35 |
+
self.sr = self.config['sample_rate']
|
36 |
+
|
37 |
+
# Load vocoder
|
38 |
+
vocoder_path = script_dir / self.config['vocoder_path']
|
39 |
+
self.hifigan, _ = load_vocoder(vocoder_path, device)
|
40 |
+
self.hifigan.eval()
|
41 |
+
|
42 |
+
# Load content model
|
43 |
+
self.content_model = get_content_model().to(device)
|
44 |
+
|
45 |
+
# Load tokenizer and text encoder
|
46 |
+
lm_path = self.config['lm_path']
|
47 |
+
self.tokenizer = T5Tokenizer.from_pretrained(lm_path)
|
48 |
+
self.text_encoder = T5EncoderModel.from_pretrained(lm_path).to(device).eval()
|
49 |
+
|
50 |
+
# Set mode
|
51 |
+
self.mode = mode
|
52 |
+
if mode == 'plugin':
|
53 |
+
self._init_plugin_mode()
|
54 |
+
elif mode == 'end2end':
|
55 |
+
self._init_end2end_mode()
|
56 |
+
else:
|
57 |
+
raise NotImplementedError("Select mode from 'plugin' and 'end2end'")
|
58 |
+
|
59 |
+
# chunk inputs to 10s clips
|
60 |
+
self.chunk_size = chunk_size * 50
|
61 |
+
|
62 |
+
def _ensure_checkpoints_exist(self):
|
63 |
+
checkpoints = [
|
64 |
+
('vocoder_path', self.config.get('vocoder_url')),
|
65 |
+
('vocoder_config_path', self.config.get('vocoder_config_url')),
|
66 |
+
('speaker_path', self.config.get('speaker_url')),
|
67 |
+
('dreamvc.ckpt_path', self.config.get('dreamvc', {}).get('ckpt_url')),
|
68 |
+
('rediffvc.ckpt_path', self.config.get('rediffvc', {}).get('ckpt_url')),
|
69 |
+
('dreamvg.ckpt_path', self.config.get('dreamvg', {}).get('ckpt_url'))
|
70 |
+
]
|
71 |
+
|
72 |
+
for path_key, url in checkpoints:
|
73 |
+
local_path = self._get_local_path(path_key)
|
74 |
+
if not local_path.exists() and url:
|
75 |
+
print(f"Downloading {path_key} from {url}")
|
76 |
+
self._download_file(url, local_path)
|
77 |
+
|
78 |
+
def _get_local_path(self, path_key):
|
79 |
+
keys = path_key.split('.')
|
80 |
+
local_path = self.config
|
81 |
+
for key in keys:
|
82 |
+
local_path = local_path.get(key, {})
|
83 |
+
return self.script_dir / local_path
|
84 |
+
|
85 |
+
def _download_file(self, url, local_path):
|
86 |
+
try:
|
87 |
+
# Attempt to send a GET request to the URL
|
88 |
+
response = requests.get(url, stream=True)
|
89 |
+
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
90 |
+
except requests.exceptions.RequestException as e:
|
91 |
+
# Log the error for debugging purposes
|
92 |
+
print(f"Error encountered: {e}")
|
93 |
+
|
94 |
+
# Development mode: prompt user for Hugging Face API key
|
95 |
+
user_input = input("Private checkpoint, please request authorization and enter your Hugging Face API key.")
|
96 |
+
self.hf_key = user_input if user_input else None
|
97 |
+
|
98 |
+
# Set headers if an API key is provided
|
99 |
+
headers = {'Authorization': f'Bearer {self.hf_key}'} if self.hf_key else {}
|
100 |
+
|
101 |
+
try:
|
102 |
+
# Attempt to send a GET request with headers in development mode
|
103 |
+
response = requests.get(url, stream=True, headers=headers)
|
104 |
+
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
105 |
+
except requests.exceptions.RequestException as e:
|
106 |
+
# Log the error for debugging purposes
|
107 |
+
print(f"Error encountered in dev mode: {e}")
|
108 |
+
response = None # Handle response accordingly in your code
|
109 |
+
|
110 |
+
local_path.parent.mkdir(parents=True, exist_ok=True)
|
111 |
+
|
112 |
+
total_size = int(response.headers.get('content-length', 0))
|
113 |
+
block_size = 8192
|
114 |
+
t = tqdm(total=total_size, unit='iB', unit_scale=True)
|
115 |
+
|
116 |
+
with open(local_path, 'wb') as f:
|
117 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
118 |
+
t.update(len(chunk))
|
119 |
+
f.write(chunk)
|
120 |
+
t.close()
|
121 |
+
|
122 |
+
def _init_plugin_mode(self):
|
123 |
+
# Initialize ReDiffVC
|
124 |
+
self.dreamvc = ReDiffVC(
|
125 |
+
config_path=self.script_dir / self.config['rediffvc']['config_path'],
|
126 |
+
ckpt_path=self.script_dir / self.config['rediffvc']['ckpt_path'],
|
127 |
+
device=self.device
|
128 |
+
)
|
129 |
+
|
130 |
+
# Initialize DreamVG
|
131 |
+
self.dreamvg = DreamVG(
|
132 |
+
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
133 |
+
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
134 |
+
device=self.device
|
135 |
+
)
|
136 |
+
|
137 |
+
# Load speaker encoder
|
138 |
+
spk_encoder.load_model(self.script_dir / self.config['speaker_path'], self.device)
|
139 |
+
self.spk_encoder = spk_encoder
|
140 |
+
self.spk_embed_cache = None
|
141 |
+
|
142 |
+
def _init_end2end_mode(self):
|
143 |
+
# Initialize DreamVC
|
144 |
+
self.dreamvc = DreamVC(
|
145 |
+
config_path=self.script_dir / self.config['dreamvc']['config_path'],
|
146 |
+
ckpt_path=self.script_dir / self.config['dreamvc']['ckpt_path'],
|
147 |
+
device=self.device
|
148 |
+
)
|
149 |
+
|
150 |
+
def _load_content(self, audio_path):
|
151 |
+
content_audio, _ = librosa.load(audio_path, sr=16000)
|
152 |
+
# Calculate the required length to make it a multiple of 16*160
|
153 |
+
target_length = ((len(content_audio) + 16*160 - 1) // (16*160)) * (16*160)
|
154 |
+
# Pad with zeros if necessary
|
155 |
+
if len(content_audio) < target_length:
|
156 |
+
content_audio = np.pad(content_audio, (0, target_length - len(content_audio)), mode='constant')
|
157 |
+
content_audio = torch.tensor(content_audio).unsqueeze(0).to(self.device)
|
158 |
+
content_clip = get_content(self.content_model, content_audio)
|
159 |
+
return content_clip
|
160 |
+
|
161 |
+
def load_spk_embed(self, emb_path):
|
162 |
+
self.spk_embed_cache = torch.load(emb_path, map_location=self.device)
|
163 |
+
|
164 |
+
def save_spk_embed(self, emb_path):
|
165 |
+
assert self.spk_embed_cache is not None
|
166 |
+
torch.save(self.spk_embed_cache.cpu(), emb_path)
|
167 |
+
|
168 |
+
def save_audio(self, output_path, audio, sr):
|
169 |
+
sf.write(output_path, audio, samplerate=sr)
|
170 |
+
|
171 |
+
@torch.no_grad()
|
172 |
+
def genvc(self, content_audio, prompt,
|
173 |
+
prompt_guidance_scale=3, prompt_guidance_rescale=0.0,
|
174 |
+
prompt_ddim_steps=100, prompt_eta=1, prompt_random_seed=None,
|
175 |
+
vc_guidance_scale=3, vc_guidance_rescale=0.7,
|
176 |
+
vc_ddim_steps=50, vc_eta=1, vc_random_seed=None,
|
177 |
+
):
|
178 |
+
|
179 |
+
content_clip = self._load_content(content_audio)
|
180 |
+
|
181 |
+
text_batch = self.tokenizer(prompt, max_length=32,
|
182 |
+
padding='max_length', truncation=True, return_tensors="pt")
|
183 |
+
text, text_mask = text_batch.input_ids.to(self.device), \
|
184 |
+
text_batch.attention_mask.to(self.device)
|
185 |
+
text = self.text_encoder(input_ids=text, attention_mask=text_mask)[0]
|
186 |
+
|
187 |
+
if self.mode == 'plugin':
|
188 |
+
spk_embed = self.dreamvg.inference([text, text_mask],
|
189 |
+
guidance_scale=prompt_guidance_scale,
|
190 |
+
guidance_rescale=prompt_guidance_rescale,
|
191 |
+
ddim_steps=prompt_ddim_steps, eta=prompt_eta,
|
192 |
+
random_seed=prompt_random_seed)
|
193 |
+
|
194 |
+
B, L, D = content_clip.shape
|
195 |
+
gen_audio_chunks = []
|
196 |
+
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
197 |
+
for i in range(num_chunks):
|
198 |
+
start_idx = i * self.chunk_size
|
199 |
+
end_idx = min((i + 1) * self.chunk_size, L)
|
200 |
+
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
201 |
+
|
202 |
+
gen_audio_chunk = self.dreamvc.inference(
|
203 |
+
spk_embed, content_clip_chunk, None,
|
204 |
+
guidance_scale=vc_guidance_scale,
|
205 |
+
guidance_rescale=vc_guidance_rescale,
|
206 |
+
ddim_steps=vc_ddim_steps,
|
207 |
+
eta=vc_eta,
|
208 |
+
random_seed=vc_random_seed)
|
209 |
+
|
210 |
+
gen_audio_chunks.append(gen_audio_chunk)
|
211 |
+
|
212 |
+
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
213 |
+
|
214 |
+
self.spk_embed_cache = spk_embed
|
215 |
+
|
216 |
+
elif self.mode == 'end2end':
|
217 |
+
B, L, D = content_clip.shape
|
218 |
+
gen_audio_chunks = []
|
219 |
+
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
220 |
+
|
221 |
+
for i in range(num_chunks):
|
222 |
+
start_idx = i * self.chunk_size
|
223 |
+
end_idx = min((i + 1) * self.chunk_size, L)
|
224 |
+
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
225 |
+
|
226 |
+
gen_audio_chunk = self.dreamvc.inference([text, text_mask], content_clip,
|
227 |
+
guidance_scale=prompt_guidance_scale,
|
228 |
+
guidance_rescale=prompt_guidance_rescale,
|
229 |
+
ddim_steps=prompt_ddim_steps,
|
230 |
+
eta=prompt_eta, random_seed=prompt_random_seed)
|
231 |
+
gen_audio_chunks.append(gen_audio_chunk)
|
232 |
+
|
233 |
+
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
234 |
+
|
235 |
+
else:
|
236 |
+
raise NotImplementedError("Select mode from 'plugin' and 'end2end'")
|
237 |
+
|
238 |
+
gen_audio = self.hifigan(gen_audio.squeeze(1))
|
239 |
+
gen_audio = gen_audio.cpu().numpy().squeeze(0).squeeze(0)
|
240 |
+
|
241 |
+
return gen_audio, self.sr
|
242 |
+
|
243 |
+
@torch.no_grad()
|
244 |
+
def simplevc(self, content_audio, speaker_audio=None, use_spk_cache=False,
|
245 |
+
vc_guidance_scale=3, vc_guidance_rescale=0.7,
|
246 |
+
vc_ddim_steps=50, vc_eta=1, vc_random_seed=None,
|
247 |
+
):
|
248 |
+
|
249 |
+
assert self.mode == 'plugin'
|
250 |
+
if speaker_audio is not None:
|
251 |
+
speaker_audio, _ = librosa.load(speaker_audio, sr=16000)
|
252 |
+
speaker_audio = torch.tensor(speaker_audio).unsqueeze(0).to(self.device)
|
253 |
+
spk_embed = spk_encoder.embed_utterance_batch(speaker_audio)
|
254 |
+
self.spk_embed_cache = spk_embed
|
255 |
+
elif use_spk_cache:
|
256 |
+
assert self.spk_embed_cache is not None
|
257 |
+
spk_embed = self.spk_embed_cache
|
258 |
+
else:
|
259 |
+
raise NotImplementedError
|
260 |
+
|
261 |
+
content_clip = self._load_content(content_audio)
|
262 |
+
|
263 |
+
B, L, D = content_clip.shape
|
264 |
+
gen_audio_chunks = []
|
265 |
+
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
266 |
+
for i in range(num_chunks):
|
267 |
+
start_idx = i * self.chunk_size
|
268 |
+
end_idx = min((i + 1) * self.chunk_size, L)
|
269 |
+
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
270 |
+
|
271 |
+
gen_audio_chunk = self.dreamvc.inference(
|
272 |
+
spk_embed, content_clip_chunk, None,
|
273 |
+
guidance_scale=vc_guidance_scale,
|
274 |
+
guidance_rescale=vc_guidance_rescale,
|
275 |
+
ddim_steps=vc_ddim_steps,
|
276 |
+
eta=vc_eta,
|
277 |
+
random_seed=vc_random_seed)
|
278 |
+
|
279 |
+
gen_audio_chunks.append(gen_audio_chunk)
|
280 |
+
|
281 |
+
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
282 |
+
|
283 |
+
gen_audio = self.hifigan(gen_audio.squeeze(1))
|
284 |
+
gen_audio = gen_audio.cpu().numpy().squeeze(0).squeeze(0)
|
285 |
+
|
286 |
+
return gen_audio, self.sr
|
287 |
+
|
288 |
+
|
289 |
+
if __name__ == '__main__':
|
290 |
+
dreamvoice = DreamVoice(config='dreamvc.yaml', mode='plugin', device='cuda')
|
291 |
+
content_audio = 'test.wav'
|
292 |
+
speaker_audio = 'speaker.wav'
|
293 |
+
prompt = 'young female voice, sounds young and cute'
|
294 |
+
gen_audio, sr = dreamvoice.genvc('test.wav', prompt)
|
295 |
+
dreamvoice.save_audio('debug.wav', gen_audio, sr)
|
dreamvoice/ckpts/bigvgan_24k/config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 0,
|
4 |
+
"batch_size": 32,
|
5 |
+
"learning_rate": 0.0001,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.999,
|
9 |
+
"seed": 1234,
|
10 |
+
|
11 |
+
"upsample_rates": [10,6,4,2],
|
12 |
+
"upsample_kernel_sizes": [20,12,8,4],
|
13 |
+
"upsample_initial_channel": 512,
|
14 |
+
"resblock_kernel_sizes": [3,7,11],
|
15 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
16 |
+
|
17 |
+
"activation": "snakebeta",
|
18 |
+
"snake_logscale": true,
|
19 |
+
|
20 |
+
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
21 |
+
"mpd_reshapes": [2, 3, 5, 7, 11],
|
22 |
+
"use_spectral_norm": false,
|
23 |
+
"discriminator_channel_mult": 1,
|
24 |
+
|
25 |
+
"segment_size": 12000,
|
26 |
+
"num_mels": 128,
|
27 |
+
"n_fft": 1920,
|
28 |
+
"hop_size": 480,
|
29 |
+
"win_size": 1920,
|
30 |
+
|
31 |
+
"sampling_rate": 24000,
|
32 |
+
|
33 |
+
"fmin": 0,
|
34 |
+
"fmax": 12000,
|
35 |
+
"fmax_for_loss": null,
|
36 |
+
|
37 |
+
"num_workers": 4,
|
38 |
+
|
39 |
+
"dist_config": {
|
40 |
+
"dist_backend": "nccl",
|
41 |
+
"dist_url": "tcp://localhost:54321",
|
42 |
+
"world_size": 1
|
43 |
+
}
|
44 |
+
}
|
dreamvoice/ckpts/bigvgan_24k/g_01000000.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:683a7baafedda8ec2fd2409deff61bd58ae66fbf10630550a17fcfed6f728977
|
3 |
+
size 58405452
|
dreamvoice/ckpts/dreamvc_base.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5abe034bf590e2ce0405c66e950dc61f041629731e959cb09e2009688cd1254c
|
3 |
+
size 300117179
|
dreamvoice/ckpts/dreamvc_cross.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87b4eb1e62b1bf4e157edc2766b9b4461c0be0f7d98a970d6b087f3797c35920
|
3 |
+
size 451974443
|
dreamvoice/ckpts/dreamvc_plugin.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2396f6b96e9057e73e20eee173d7aaded6b5eb70745a9f5282999c0ea9a4d848
|
3 |
+
size 104892440
|
dreamvoice/ckpts/spk_encoder/pretrained.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39373b86598fa3da9fcddee6142382efe09777e8d37dc9c0561f41f0070f134e
|
3 |
+
size 17090379
|
dreamvoice/dreamvc.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
sample_rate: 24000
|
4 |
+
vocoder_path: 'ckpts/bigvgan_24k/g_01000000.pt'
|
5 |
+
vocoder_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/bigvgan_24k/g_01000000.pt'
|
6 |
+
vocoder_config_path: 'ckpts/bigvgan_24k/config.json'
|
7 |
+
vocoder_config_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/bigvgan_24k/config.json'
|
8 |
+
|
9 |
+
speaker_path: 'ckpts/spk_encoder/pretrained.pt'
|
10 |
+
speaker_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/spk_encoder/pretrained.pt'
|
11 |
+
lm_path: 'google/flan-t5-base'
|
12 |
+
|
13 |
+
dreamvc:
|
14 |
+
config_path: 'src/configs/diffvc_cross.yaml'
|
15 |
+
ckpt_path: 'ckpts/dreamvc_cross.pt'
|
16 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_cross.pt'
|
17 |
+
|
18 |
+
rediffvc:
|
19 |
+
config_path: 'src/configs/diffvc_base.yaml'
|
20 |
+
ckpt_path: 'ckpts/dreamvc_base.pt'
|
21 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_base.pt'
|
22 |
+
|
23 |
+
dreamvg:
|
24 |
+
config_path: 'src/configs/plugin_cross.yaml'
|
25 |
+
ckpt_path: 'ckpts/dreamvc_plugin.pt'
|
26 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_plugin.pt'
|
dreamvoice/src/.ipynb_checkpoints/extract_features-checkpoint.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
import soundfile as sf
|
6 |
+
import pandas as pd
|
7 |
+
# from feats.hubert_model import get_soft_model, get_hubert_soft_content
|
8 |
+
from feats.contentvec_hf import get_content_model, get_content
|
9 |
+
# from modules.speaker_encoder.encoder import inference as spk_encoder
|
10 |
+
# from pathlib import Path
|
11 |
+
from tqdm import tqdm
|
12 |
+
from multiprocessing import Process
|
13 |
+
import pyworld as pw
|
14 |
+
|
15 |
+
|
16 |
+
def resample_save(infolder, audio_path, model,
|
17 |
+
audio_sr=24000, content_sr=16000, min_length=1.92,
|
18 |
+
content_resolution=50,
|
19 |
+
save_path='features'):
|
20 |
+
if os.path.isfile(save_path + '/' + 'audio_24k/' + audio_path) is False:
|
21 |
+
audio, sr = librosa.load(infolder + audio_path, sr=content_sr)
|
22 |
+
final_length = audio.shape[-1] // (content_sr / content_resolution) * (content_sr / content_resolution)
|
23 |
+
# final_length = final_length / content_sr
|
24 |
+
|
25 |
+
length = max(round(min_length*content_sr), round(final_length))
|
26 |
+
assert length % 10 == 0
|
27 |
+
audio = audio[:length]
|
28 |
+
audio_save = np.zeros(length, dtype=audio.dtype)
|
29 |
+
audio_save[:audio.shape[-1]] = audio[:audio.shape[-1]]
|
30 |
+
|
31 |
+
# content = get_hubert_soft_content(model, torch.tensor(audio_save).unsqueeze(0))
|
32 |
+
content = get_content(model, torch.tensor(audio_save).unsqueeze(0))
|
33 |
+
content = content.cpu()
|
34 |
+
os.makedirs(os.path.dirname(save_path + '/' + 'content/' + audio_path), exist_ok=True)
|
35 |
+
torch.save(content, save_path + '/' + 'content/' + audio_path+'.pt')
|
36 |
+
# print(audio_save.shape)
|
37 |
+
# print(content.shape)
|
38 |
+
os.makedirs(os.path.dirname(save_path + '/' + 'audio_16k/' + audio_path), exist_ok=True)
|
39 |
+
sf.write(save_path + '/' + 'audio_16k/' + audio_path, audio_save, int(sr))
|
40 |
+
# print(save_path + '/' + 'audio_16k/' + audio_path)
|
41 |
+
|
42 |
+
audio, sr = librosa.load(infolder + audio_path, sr=audio_sr)
|
43 |
+
length = max(round(min_length*audio_sr), round(final_length/content_sr*audio_sr))
|
44 |
+
assert length % 10 == 0
|
45 |
+
audio = audio[:length]
|
46 |
+
audio_save = np.zeros(length, dtype=audio.dtype)
|
47 |
+
audio_save[:audio.shape[-1]] = audio[:audio.shape[-1]]
|
48 |
+
# print(audio_save.shape)
|
49 |
+
os.makedirs(os.path.dirname(save_path + '/' + 'audio_24k/' + audio_path), exist_ok=True)
|
50 |
+
sf.write(save_path + '/' + 'audio_24k/' + audio_path, audio_save, int(sr))
|
51 |
+
|
52 |
+
|
53 |
+
def extract_f0(in_folder, audio_path, save_path):
|
54 |
+
audio, sr = librosa.load(in_folder + audio_path, sr=None)
|
55 |
+
assert sr == 16000
|
56 |
+
if os.path.isfile(save_path + '/' + 'f0/' + audio_path + '.pt') is False:
|
57 |
+
# wav = audio
|
58 |
+
# wav = np.pad(wav, int((1024-320)/2), mode='reflect')
|
59 |
+
# f0_, _, _ = librosa.pyin(wav, frame_length=1024, hop_length=320, center=False, sr=sr,
|
60 |
+
# fmin=librosa.note_to_hz('C2'),
|
61 |
+
# fmax=librosa.note_to_hz('C6'))
|
62 |
+
|
63 |
+
_f0, t = pw.dio(audio.astype(np.float64), sr, frame_period=320 / sr * 1000)
|
64 |
+
f0 = pw.stonemask(audio.astype(np.float64), _f0, t, sr)[:-1]
|
65 |
+
|
66 |
+
f0 = np.nan_to_num(f0)
|
67 |
+
os.makedirs(os.path.dirname(save_path + '/' + 'f0/' + audio_path), exist_ok=True)
|
68 |
+
# print(save_path + '/' + 'f0/' + audio_path + '.pt')
|
69 |
+
torch.save(torch.tensor(f0), save_path + '/' + 'f0/' + audio_path + '.pt')
|
70 |
+
|
71 |
+
|
72 |
+
def chunks(arr, m):
|
73 |
+
result = [[] for i in range(m)]
|
74 |
+
for i in range(len(arr)):
|
75 |
+
result[i%m].append(arr[i])
|
76 |
+
return result
|
77 |
+
|
78 |
+
|
79 |
+
def extract_f0_main(in_folder, audio_paths, save_path):
|
80 |
+
for audio_path in tqdm(audio_paths):
|
81 |
+
extract_f0(in_folder, audio_path, save_path)
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == '__main__':
|
85 |
+
df = pd.read_csv('../test_data/vc_meta.csv')
|
86 |
+
# model = get_soft_model('../pre_ckpts/hubert_soft.pt').to('cuda')
|
87 |
+
model = get_content_model().to('cuda')
|
88 |
+
# # spk_encoder.load_model(Path('ckpts/spk_encoder/pretrained.pt'), device="cuda")
|
89 |
+
for i in tqdm(range(len(df))):
|
90 |
+
row = df.iloc[i]
|
91 |
+
in_path = row['path']
|
92 |
+
resample_save('../test_data/', in_path, model, save_path='../features/')
|
93 |
+
|
94 |
+
in_folder = '../features/audio_16k/'
|
95 |
+
audio_files = list(df['path'])
|
96 |
+
save_path = '../features/'
|
97 |
+
cores = 6
|
98 |
+
|
99 |
+
subsets = chunks(audio_files, cores)
|
100 |
+
|
101 |
+
for subset in subsets:
|
102 |
+
t = Process(target=extract_f0_main, args=(in_folder, subset, save_path))
|
103 |
+
t.start()
|
dreamvoice/src/.ipynb_checkpoints/plugin_wrapper-checkpoint.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import torch
|
3 |
+
from diffusers import DDIMScheduler
|
4 |
+
from .model.p2e_cross import P2E_Cross
|
5 |
+
from .utils import scale_shift, scale_shift_re, rescale_noise_cfg
|
6 |
+
|
7 |
+
|
8 |
+
class DreamVG(object):
|
9 |
+
def __init__(self,
|
10 |
+
config_path='configs/plugin_cross.yaml',
|
11 |
+
ckpt_path='../ckpts/dreamvc_plugin.pt',
|
12 |
+
device='cpu'):
|
13 |
+
|
14 |
+
with open(config_path, 'r') as fp:
|
15 |
+
config = yaml.safe_load(fp)
|
16 |
+
|
17 |
+
self.device = device
|
18 |
+
self.model = P2E_Cross(config['model']).to(device)
|
19 |
+
self.model.load_state_dict(torch.load(ckpt_path)['model'])
|
20 |
+
self.model.eval()
|
21 |
+
|
22 |
+
noise_scheduler = DDIMScheduler(num_train_timesteps=config['scheduler']['num_train_steps'],
|
23 |
+
beta_start=config['scheduler']['beta_start'],
|
24 |
+
beta_end=config['scheduler']['beta_end'],
|
25 |
+
rescale_betas_zero_snr=True,
|
26 |
+
timestep_spacing="trailing",
|
27 |
+
clip_sample=False,
|
28 |
+
prediction_type='v_prediction')
|
29 |
+
self.noise_scheduler = noise_scheduler
|
30 |
+
self.scale = config['scheduler']['scale']
|
31 |
+
self.shift = config['scheduler']['shift']
|
32 |
+
self.spk_shape = config['model']['unet']['in_channels']
|
33 |
+
|
34 |
+
@torch.no_grad()
|
35 |
+
def inference(self, text,
|
36 |
+
guidance_scale=5, guidance_rescale=0.7,
|
37 |
+
ddim_steps=50, eta=1, random_seed=2023,
|
38 |
+
):
|
39 |
+
text, text_mask = text
|
40 |
+
self.model.eval()
|
41 |
+
|
42 |
+
gen_shape = (1, self.spk_shape)
|
43 |
+
|
44 |
+
if random_seed is not None:
|
45 |
+
generator = torch.Generator(device=self.device).manual_seed(random_seed)
|
46 |
+
else:
|
47 |
+
generator = torch.Generator(device=self.device)
|
48 |
+
generator.seed()
|
49 |
+
|
50 |
+
self.noise_scheduler.set_timesteps(ddim_steps)
|
51 |
+
|
52 |
+
# init noise
|
53 |
+
noise = torch.randn(gen_shape, generator=generator, device=self.device)
|
54 |
+
latents = noise
|
55 |
+
|
56 |
+
for t in self.noise_scheduler.timesteps:
|
57 |
+
latents = self.noise_scheduler.scale_model_input(latents, t)
|
58 |
+
|
59 |
+
if guidance_scale:
|
60 |
+
output_text = self.model(latents, t, text, text_mask, train_cfg=False)
|
61 |
+
output_uncond = self.model(latents, t, text, text_mask, train_cfg=True, cfg_prob=1.0)
|
62 |
+
|
63 |
+
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
64 |
+
if guidance_rescale > 0.0:
|
65 |
+
output_pred = rescale_noise_cfg(output_pred, output_text,
|
66 |
+
guidance_rescale=guidance_rescale)
|
67 |
+
else:
|
68 |
+
output_pred = self.model(latents, t, text, text_mask, train_cfg=False)
|
69 |
+
|
70 |
+
latents = self.noise_scheduler.step(model_output=output_pred, timestep=t, sample=latents,
|
71 |
+
eta=eta, generator=generator).prev_sample
|
72 |
+
|
73 |
+
# pred = reverse_minmax_norm_diff(latents, vmin=0.0, vmax=0.5)
|
74 |
+
pred = scale_shift_re(latents, 1/self.scale, self.shift)
|
75 |
+
# pred = torch.clip(pred, min=0.0, max=0.5)
|
76 |
+
return pred
|
dreamvoice/src/.ipynb_checkpoints/train_plugin-checkpoint.py
ADDED
File without changes
|
dreamvoice/src/.ipynb_checkpoints/train_vc-checkpoint.py
ADDED
File without changes
|
dreamvoice/src/.ipynb_checkpoints/vc_wrapper-checkpoint.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import torch
|
3 |
+
from diffusers import DDIMScheduler
|
4 |
+
from .model.model import DiffVC
|
5 |
+
from .model.model_cross import DiffVC_Cross
|
6 |
+
from .utils import scale_shift, scale_shift_re, rescale_noise_cfg
|
7 |
+
|
8 |
+
|
9 |
+
class ReDiffVC(object):
|
10 |
+
def __init__(self,
|
11 |
+
config_path='configs/diffvc_base.yaml',
|
12 |
+
ckpt_path='../ckpts/dreamvc_base.pt',
|
13 |
+
device='cpu'):
|
14 |
+
|
15 |
+
with open(config_path, 'r') as fp:
|
16 |
+
config = yaml.safe_load(fp)
|
17 |
+
|
18 |
+
self.device = device
|
19 |
+
self.model = DiffVC(config['model']).to(device)
|
20 |
+
self.model.load_state_dict(torch.load(ckpt_path)['model'])
|
21 |
+
self.model.eval()
|
22 |
+
|
23 |
+
noise_scheduler = DDIMScheduler(num_train_timesteps=config['scheduler']['num_train_steps'],
|
24 |
+
beta_start=config['scheduler']['beta_start'],
|
25 |
+
beta_end=config['scheduler']['beta_end'],
|
26 |
+
rescale_betas_zero_snr=True,
|
27 |
+
timestep_spacing="trailing",
|
28 |
+
clip_sample=False,
|
29 |
+
prediction_type='v_prediction')
|
30 |
+
self.noise_scheduler = noise_scheduler
|
31 |
+
self.scale = config['scheduler']['scale']
|
32 |
+
self.shift = config['scheduler']['shift']
|
33 |
+
self.melshape = config['model']['unet']['sample_size'][0]
|
34 |
+
|
35 |
+
@torch.no_grad()
|
36 |
+
def inference(self,
|
37 |
+
spk_embed, content_clip, f0_clip=None,
|
38 |
+
guidance_scale=3, guidance_rescale=0.7,
|
39 |
+
ddim_steps=50, eta=1, random_seed=2023):
|
40 |
+
|
41 |
+
self.model.eval()
|
42 |
+
if random_seed is not None:
|
43 |
+
generator = torch.Generator(device=self.device).manual_seed(random_seed)
|
44 |
+
else:
|
45 |
+
generator = torch.Generator(device=self.device)
|
46 |
+
generator.seed()
|
47 |
+
|
48 |
+
self.noise_scheduler.set_timesteps(ddim_steps)
|
49 |
+
|
50 |
+
# init noise
|
51 |
+
gen_shape = (1, 1, self.melshape, content_clip.shape[-2])
|
52 |
+
noise = torch.randn(gen_shape, generator=generator, device=self.device)
|
53 |
+
latents = noise
|
54 |
+
|
55 |
+
for t in self.noise_scheduler.timesteps:
|
56 |
+
latents = self.noise_scheduler.scale_model_input(latents, t)
|
57 |
+
|
58 |
+
if guidance_scale:
|
59 |
+
output_text = self.model(latents, t, content_clip, spk_embed, f0_clip, train_cfg=False)
|
60 |
+
output_uncond = self.model(latents, t, content_clip, spk_embed, f0_clip, train_cfg=True,
|
61 |
+
speaker_cfg=1.0, pitch_cfg=0.0)
|
62 |
+
|
63 |
+
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
64 |
+
if guidance_rescale > 0.0:
|
65 |
+
output_pred = rescale_noise_cfg(output_pred, output_text,
|
66 |
+
guidance_rescale=guidance_rescale)
|
67 |
+
else:
|
68 |
+
output_pred = self.model(latents, t, content_clip, spk_embed, f0_clip, train_cfg=False)
|
69 |
+
|
70 |
+
latents = self.noise_scheduler.step(model_output=output_pred, timestep=t, sample=latents,
|
71 |
+
eta=eta, generator=generator).prev_sample
|
72 |
+
|
73 |
+
pred = scale_shift_re(latents, scale=1/self.scale, shift=self.shift)
|
74 |
+
return pred
|
75 |
+
|
76 |
+
|
77 |
+
class DreamVC(object):
|
78 |
+
def __init__(self,
|
79 |
+
config_path='configs/diffvc_cross.yaml',
|
80 |
+
ckpt_path='../ckpts/dreamvc_cross.pt',
|
81 |
+
device='cpu'):
|
82 |
+
|
83 |
+
with open(config_path, 'r') as fp:
|
84 |
+
config = yaml.safe_load(fp)
|
85 |
+
|
86 |
+
self.device = device
|
87 |
+
self.model = DiffVC_Cross(config['model']).to(device)
|
88 |
+
self.model.load_state_dict(torch.load(ckpt_path)['model'])
|
89 |
+
self.model.eval()
|
90 |
+
|
91 |
+
noise_scheduler = DDIMScheduler(num_train_timesteps=config['scheduler']['num_train_steps'],
|
92 |
+
beta_start=config['scheduler']['beta_start'],
|
93 |
+
beta_end=config['scheduler']['beta_end'],
|
94 |
+
rescale_betas_zero_snr=True,
|
95 |
+
timestep_spacing="trailing",
|
96 |
+
clip_sample=False,
|
97 |
+
prediction_type='v_prediction')
|
98 |
+
self.noise_scheduler = noise_scheduler
|
99 |
+
self.scale = config['scheduler']['scale']
|
100 |
+
self.shift = config['scheduler']['shift']
|
101 |
+
self.melshape = config['model']['unet']['sample_size'][0]
|
102 |
+
|
103 |
+
@torch.no_grad()
|
104 |
+
def inference(self,
|
105 |
+
text, content_clip, f0_clip=None,
|
106 |
+
guidance_scale=3, guidance_rescale=0.7,
|
107 |
+
ddim_steps=50, eta=1, random_seed=2023):
|
108 |
+
|
109 |
+
text, text_mask = text
|
110 |
+
self.model.eval()
|
111 |
+
if random_seed is not None:
|
112 |
+
generator = torch.Generator(device=self.device).manual_seed(random_seed)
|
113 |
+
else:
|
114 |
+
generator = torch.Generator(device=self.device)
|
115 |
+
generator.seed()
|
116 |
+
|
117 |
+
self.noise_scheduler.set_timesteps(ddim_steps)
|
118 |
+
|
119 |
+
# init noise
|
120 |
+
gen_shape = (1, 1, self.melshape, content_clip.shape[-2])
|
121 |
+
noise = torch.randn(gen_shape, generator=generator, device=self.device)
|
122 |
+
latents = noise
|
123 |
+
|
124 |
+
for t in self.noise_scheduler.timesteps:
|
125 |
+
latents = self.noise_scheduler.scale_model_input(latents, t)
|
126 |
+
|
127 |
+
if guidance_scale:
|
128 |
+
output_text = self.model(latents, t, content_clip, text, text_mask, f0_clip, train_cfg=False)
|
129 |
+
output_uncond = self.model(latents, t, content_clip, text, text_mask, f0_clip, train_cfg=True,
|
130 |
+
speaker_cfg=1.0, pitch_cfg=0.0)
|
131 |
+
|
132 |
+
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
133 |
+
if guidance_rescale > 0.0:
|
134 |
+
output_pred = rescale_noise_cfg(output_pred, output_text,
|
135 |
+
guidance_rescale=guidance_rescale)
|
136 |
+
else:
|
137 |
+
output_pred = self.model(latents, t, content_clip, text, text_mask, f0_clip, train_cfg=False)
|
138 |
+
|
139 |
+
latents = self.noise_scheduler.step(model_output=output_pred, timestep=t, sample=latents,
|
140 |
+
eta=eta, generator=generator).prev_sample
|
141 |
+
|
142 |
+
pred = scale_shift_re(latents, scale=1/self.scale, shift=self.shift)
|
143 |
+
return pred
|
144 |
+
|
dreamvoice/src/__pycache__/plugin_wrapper.cpython-310.pyc
ADDED
Binary file (2.41 kB). View file
|
|
dreamvoice/src/__pycache__/plugin_wrapper.cpython-311.pyc
ADDED
Binary file (4.38 kB). View file
|
|
dreamvoice/src/__pycache__/vc_wrapper.cpython-310.pyc
ADDED
Binary file (3.49 kB). View file
|
|
dreamvoice/src/__pycache__/vc_wrapper.cpython-311.pyc
ADDED
Binary file (7.81 kB). View file
|
|
dreamvoice/src/configs/.ipynb_checkpoints/diffvc_base-checkpoint.yaml
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "base"
|
4 |
+
|
5 |
+
model:
|
6 |
+
cls_embedding:
|
7 |
+
speaker_dim: 256
|
8 |
+
feature_dim: 512
|
9 |
+
content_dim: 768
|
10 |
+
content_hidden: 256
|
11 |
+
use_pitch: false
|
12 |
+
|
13 |
+
unet:
|
14 |
+
sample_size: [128, 256]
|
15 |
+
in_channels: 257
|
16 |
+
out_channels: 1
|
17 |
+
layers_per_block: 2
|
18 |
+
block_out_channels: [128, 256, 256, 512]
|
19 |
+
down_block_types:
|
20 |
+
[
|
21 |
+
"DownBlock2D",
|
22 |
+
"DownBlock2D",
|
23 |
+
"AttnDownBlock2D",
|
24 |
+
"AttnDownBlock2D",
|
25 |
+
]
|
26 |
+
up_block_types:
|
27 |
+
[
|
28 |
+
"AttnUpBlock2D",
|
29 |
+
"AttnUpBlock2D",
|
30 |
+
"UpBlock2D",
|
31 |
+
"UpBlock2D"
|
32 |
+
]
|
33 |
+
attention_head_dim: 32
|
34 |
+
class_embed_type: 'identity'
|
35 |
+
|
36 |
+
scheduler:
|
37 |
+
num_train_steps: 1000
|
38 |
+
beta_schedule: 'linear'
|
39 |
+
beta_start: 0.0001
|
40 |
+
beta_end: 0.02
|
41 |
+
num_infer_steps: 50
|
42 |
+
rescale_betas_zero_snr: true
|
43 |
+
timestep_spacing: "trailing"
|
44 |
+
clip_sample: false
|
45 |
+
prediction_type: 'v_prediction'
|
46 |
+
scale: 2.75
|
47 |
+
shift: 5.80
|
dreamvoice/src/configs/.ipynb_checkpoints/diffvc_base_pitch-checkpoint.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "base"
|
4 |
+
|
5 |
+
diffwrap:
|
6 |
+
cls_embedding:
|
7 |
+
speaker_dim: 256
|
8 |
+
feature_dim: 512
|
9 |
+
content_dim: 768
|
10 |
+
content_hidden: 256
|
11 |
+
use_pitch: true
|
12 |
+
pitch_dim: 1
|
13 |
+
pitch_hidden: 128
|
14 |
+
|
15 |
+
unet:
|
16 |
+
sample_size: [128, 256]
|
17 |
+
in_channels: 385
|
18 |
+
out_channels: 1
|
19 |
+
layers_per_block: 2
|
20 |
+
block_out_channels: [256, 256, 512]
|
21 |
+
down_block_types:
|
22 |
+
[
|
23 |
+
"DownBlock2D",
|
24 |
+
"AttnDownBlock2D",
|
25 |
+
"AttnDownBlock2D",
|
26 |
+
]
|
27 |
+
up_block_types:
|
28 |
+
[
|
29 |
+
"AttnUpBlock2D",
|
30 |
+
"AttnUpBlock2D",
|
31 |
+
"UpBlock2D"
|
32 |
+
]
|
33 |
+
attention_head_dim: 32
|
34 |
+
class_embed_type: 'identity'
|
dreamvoice/src/configs/.ipynb_checkpoints/diffvc_cross-checkpoint.yaml
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "cross"
|
4 |
+
|
5 |
+
model:
|
6 |
+
cls_embedding:
|
7 |
+
content_dim: 768
|
8 |
+
content_hidden: 256
|
9 |
+
use_pitch: false
|
10 |
+
|
11 |
+
unet:
|
12 |
+
sample_size: [128, 256]
|
13 |
+
in_channels: 257
|
14 |
+
out_channels: 1
|
15 |
+
layers_per_block: 2
|
16 |
+
block_out_channels: [128, 256, 256, 512]
|
17 |
+
down_block_types:
|
18 |
+
[
|
19 |
+
"DownBlock2D",
|
20 |
+
"DownBlock2D",
|
21 |
+
"CrossAttnDownBlock2D",
|
22 |
+
"CrossAttnDownBlock2D",
|
23 |
+
]
|
24 |
+
up_block_types:
|
25 |
+
[
|
26 |
+
"CrossAttnUpBlock2D",
|
27 |
+
"CrossAttnUpBlock2D",
|
28 |
+
"UpBlock2D",
|
29 |
+
"UpBlock2D",
|
30 |
+
]
|
31 |
+
attention_head_dim: 32
|
32 |
+
cross_attention_dim: 768
|
33 |
+
|
34 |
+
scheduler:
|
35 |
+
num_train_steps: 1000
|
36 |
+
beta_schedule: 'linear'
|
37 |
+
beta_start: 0.0001
|
38 |
+
beta_end: 0.02
|
39 |
+
num_infer_steps: 50
|
40 |
+
rescale_betas_zero_snr: true
|
41 |
+
timestep_spacing: "trailing"
|
42 |
+
clip_sample: false
|
43 |
+
prediction_type: 'v_prediction'
|
44 |
+
scale: 2.75
|
45 |
+
shift: 5.80
|
dreamvoice/src/configs/.ipynb_checkpoints/diffvc_cross_pitch-checkpoint.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "cross"
|
4 |
+
|
5 |
+
diffwrap:
|
6 |
+
cls_embedding:
|
7 |
+
content_dim: 768
|
8 |
+
content_hidden: 256
|
9 |
+
use_pitch: true
|
10 |
+
pitch_dim: 1
|
11 |
+
pitch_hidden: 128
|
12 |
+
|
13 |
+
unet:
|
14 |
+
sample_size: [100, 256]
|
15 |
+
in_channels: 385
|
16 |
+
out_channels: 1
|
17 |
+
layers_per_block: 2
|
18 |
+
block_out_channels: [128, 256, 512]
|
19 |
+
down_block_types:
|
20 |
+
[
|
21 |
+
"DownBlock2D",
|
22 |
+
"CrossAttnDownBlock2D",
|
23 |
+
"CrossAttnDownBlock2D",
|
24 |
+
]
|
25 |
+
up_block_types:
|
26 |
+
[
|
27 |
+
"CrossAttnUpBlock2D",
|
28 |
+
"CrossAttnUpBlock2D",
|
29 |
+
"UpBlock2D",
|
30 |
+
]
|
31 |
+
attention_head_dim: 32
|
32 |
+
cross_attention_dim: 768
|
33 |
+
|
dreamvoice/src/configs/.ipynb_checkpoints/plugin_cross-checkpoint.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "cross"
|
4 |
+
|
5 |
+
model:
|
6 |
+
cls_embedding:
|
7 |
+
content_dim: 768
|
8 |
+
content_hidden: 256
|
9 |
+
|
10 |
+
unet:
|
11 |
+
sample_size: [1, 1]
|
12 |
+
in_channels: 256
|
13 |
+
out_channels: 256
|
14 |
+
layers_per_block: 2
|
15 |
+
block_out_channels: [256]
|
16 |
+
down_block_types:
|
17 |
+
[
|
18 |
+
"CrossAttnDownBlock2D",
|
19 |
+
]
|
20 |
+
up_block_types:
|
21 |
+
[
|
22 |
+
"CrossAttnUpBlock2D",
|
23 |
+
]
|
24 |
+
attention_head_dim: 32
|
25 |
+
cross_attention_dim: 768
|
26 |
+
|
27 |
+
scheduler:
|
28 |
+
num_train_steps: 1000
|
29 |
+
beta_schedule: 'linear'
|
30 |
+
beta_start: 0.0001
|
31 |
+
beta_end: 0.02
|
32 |
+
num_infer_steps: 50
|
33 |
+
rescale_betas_zero_snr: true
|
34 |
+
timestep_spacing: "trailing"
|
35 |
+
clip_sample: false
|
36 |
+
prediction_type: 'v_prediction'
|
37 |
+
scale: 0.05
|
38 |
+
shift: -0.035
|
39 |
+
|
dreamvoice/src/configs/diffvc_base.yaml
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "base"
|
4 |
+
|
5 |
+
model:
|
6 |
+
cls_embedding:
|
7 |
+
speaker_dim: 256
|
8 |
+
feature_dim: 512
|
9 |
+
content_dim: 768
|
10 |
+
content_hidden: 256
|
11 |
+
use_pitch: false
|
12 |
+
|
13 |
+
unet:
|
14 |
+
sample_size: [128, 256]
|
15 |
+
in_channels: 257
|
16 |
+
out_channels: 1
|
17 |
+
layers_per_block: 2
|
18 |
+
block_out_channels: [128, 256, 256, 512]
|
19 |
+
down_block_types:
|
20 |
+
[
|
21 |
+
"DownBlock2D",
|
22 |
+
"DownBlock2D",
|
23 |
+
"AttnDownBlock2D",
|
24 |
+
"AttnDownBlock2D",
|
25 |
+
]
|
26 |
+
up_block_types:
|
27 |
+
[
|
28 |
+
"AttnUpBlock2D",
|
29 |
+
"AttnUpBlock2D",
|
30 |
+
"UpBlock2D",
|
31 |
+
"UpBlock2D"
|
32 |
+
]
|
33 |
+
attention_head_dim: 32
|
34 |
+
class_embed_type: 'identity'
|
35 |
+
|
36 |
+
scheduler:
|
37 |
+
num_train_steps: 1000
|
38 |
+
beta_schedule: 'linear'
|
39 |
+
beta_start: 0.0001
|
40 |
+
beta_end: 0.02
|
41 |
+
num_infer_steps: 50
|
42 |
+
rescale_betas_zero_snr: true
|
43 |
+
timestep_spacing: "trailing"
|
44 |
+
clip_sample: false
|
45 |
+
prediction_type: 'v_prediction'
|
46 |
+
scale: 2.75
|
47 |
+
shift: 5.80
|
dreamvoice/src/configs/diffvc_base_pitch.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "base"
|
4 |
+
|
5 |
+
diffwrap:
|
6 |
+
cls_embedding:
|
7 |
+
speaker_dim: 256
|
8 |
+
feature_dim: 512
|
9 |
+
content_dim: 768
|
10 |
+
content_hidden: 256
|
11 |
+
use_pitch: true
|
12 |
+
pitch_dim: 1
|
13 |
+
pitch_hidden: 128
|
14 |
+
|
15 |
+
unet:
|
16 |
+
sample_size: [128, 256]
|
17 |
+
in_channels: 385
|
18 |
+
out_channels: 1
|
19 |
+
layers_per_block: 2
|
20 |
+
block_out_channels: [128, 256, 512]
|
21 |
+
down_block_types:
|
22 |
+
[
|
23 |
+
"DownBlock2D",
|
24 |
+
"AttnDownBlock2D",
|
25 |
+
"AttnDownBlock2D",
|
26 |
+
]
|
27 |
+
up_block_types:
|
28 |
+
[
|
29 |
+
"AttnUpBlock2D",
|
30 |
+
"AttnUpBlock2D",
|
31 |
+
"UpBlock2D"
|
32 |
+
]
|
33 |
+
attention_head_dim: 32
|
34 |
+
class_embed_type: 'identity'
|
dreamvoice/src/configs/diffvc_cross.yaml
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "cross"
|
4 |
+
|
5 |
+
model:
|
6 |
+
cls_embedding:
|
7 |
+
content_dim: 768
|
8 |
+
content_hidden: 256
|
9 |
+
use_pitch: false
|
10 |
+
|
11 |
+
unet:
|
12 |
+
sample_size: [128, 256]
|
13 |
+
in_channels: 257
|
14 |
+
out_channels: 1
|
15 |
+
layers_per_block: 2
|
16 |
+
block_out_channels: [128, 256, 256, 512]
|
17 |
+
down_block_types:
|
18 |
+
[
|
19 |
+
"DownBlock2D",
|
20 |
+
"DownBlock2D",
|
21 |
+
"CrossAttnDownBlock2D",
|
22 |
+
"CrossAttnDownBlock2D",
|
23 |
+
]
|
24 |
+
up_block_types:
|
25 |
+
[
|
26 |
+
"CrossAttnUpBlock2D",
|
27 |
+
"CrossAttnUpBlock2D",
|
28 |
+
"UpBlock2D",
|
29 |
+
"UpBlock2D",
|
30 |
+
]
|
31 |
+
attention_head_dim: 32
|
32 |
+
cross_attention_dim: 768
|
33 |
+
|
34 |
+
scheduler:
|
35 |
+
num_train_steps: 1000
|
36 |
+
beta_schedule: 'linear'
|
37 |
+
beta_start: 0.0001
|
38 |
+
beta_end: 0.02
|
39 |
+
num_infer_steps: 50
|
40 |
+
rescale_betas_zero_snr: true
|
41 |
+
timestep_spacing: "trailing"
|
42 |
+
clip_sample: false
|
43 |
+
prediction_type: 'v_prediction'
|
44 |
+
scale: 2.75
|
45 |
+
shift: 5.80
|
dreamvoice/src/configs/diffvc_cross_pitch.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "cross"
|
4 |
+
|
5 |
+
diffwrap:
|
6 |
+
cls_embedding:
|
7 |
+
content_dim: 768
|
8 |
+
content_hidden: 256
|
9 |
+
use_pitch: true
|
10 |
+
pitch_dim: 1
|
11 |
+
pitch_hidden: 128
|
12 |
+
|
13 |
+
unet:
|
14 |
+
sample_size: [100, 256]
|
15 |
+
in_channels: 385
|
16 |
+
out_channels: 1
|
17 |
+
layers_per_block: 2
|
18 |
+
block_out_channels: [128, 256, 512]
|
19 |
+
down_block_types:
|
20 |
+
[
|
21 |
+
"DownBlock2D",
|
22 |
+
"CrossAttnDownBlock2D",
|
23 |
+
"CrossAttnDownBlock2D",
|
24 |
+
]
|
25 |
+
up_block_types:
|
26 |
+
[
|
27 |
+
"CrossAttnUpBlock2D",
|
28 |
+
"CrossAttnUpBlock2D",
|
29 |
+
"UpBlock2D",
|
30 |
+
]
|
31 |
+
attention_head_dim: 32
|
32 |
+
cross_attention_dim: 768
|
33 |
+
|
dreamvoice/src/configs/plugin_cross.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "cross"
|
4 |
+
|
5 |
+
model:
|
6 |
+
cls_embedding:
|
7 |
+
content_dim: 768
|
8 |
+
content_hidden: 256
|
9 |
+
|
10 |
+
unet:
|
11 |
+
sample_size: [1, 1]
|
12 |
+
in_channels: 256
|
13 |
+
out_channels: 256
|
14 |
+
layers_per_block: 2
|
15 |
+
block_out_channels: [256]
|
16 |
+
down_block_types:
|
17 |
+
[
|
18 |
+
"CrossAttnDownBlock2D",
|
19 |
+
]
|
20 |
+
up_block_types:
|
21 |
+
[
|
22 |
+
"CrossAttnUpBlock2D",
|
23 |
+
]
|
24 |
+
attention_head_dim: 32
|
25 |
+
cross_attention_dim: 768
|
26 |
+
|
27 |
+
scheduler:
|
28 |
+
num_train_steps: 1000
|
29 |
+
beta_schedule: 'linear'
|
30 |
+
beta_start: 0.0001
|
31 |
+
beta_end: 0.02
|
32 |
+
num_infer_steps: 50
|
33 |
+
rescale_betas_zero_snr: true
|
34 |
+
timestep_spacing: "trailing"
|
35 |
+
clip_sample: false
|
36 |
+
prediction_type: 'v_prediction'
|
37 |
+
scale: 0.05
|
38 |
+
shift: -0.035
|
39 |
+
|
dreamvoice/src/debug.py
ADDED
File without changes
|
dreamvoice/src/extract_features.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
import soundfile as sf
|
6 |
+
import pandas as pd
|
7 |
+
# from feats.hubert_model import get_soft_model, get_hubert_soft_content
|
8 |
+
from feats.contentvec_hf import get_content_model, get_content
|
9 |
+
# from modules.speaker_encoder.encoder import inference as spk_encoder
|
10 |
+
# from pathlib import Path
|
11 |
+
from tqdm import tqdm
|
12 |
+
from multiprocessing import Process
|
13 |
+
import pyworld as pw
|
14 |
+
|
15 |
+
|
16 |
+
def resample_save(infolder, audio_path, model,
|
17 |
+
audio_sr=24000, content_sr=16000, min_length=1.92,
|
18 |
+
content_resolution=50,
|
19 |
+
save_path='features'):
|
20 |
+
if os.path.isfile(save_path + '/' + 'audio_24k/' + audio_path) is False:
|
21 |
+
audio, sr = librosa.load(infolder + audio_path, sr=content_sr)
|
22 |
+
final_length = audio.shape[-1] // (content_sr / content_resolution) * (content_sr / content_resolution)
|
23 |
+
# final_length = final_length / content_sr
|
24 |
+
|
25 |
+
length = max(round(min_length*content_sr), round(final_length))
|
26 |
+
assert length % 10 == 0
|
27 |
+
audio = audio[:length]
|
28 |
+
audio_save = np.zeros(length, dtype=audio.dtype)
|
29 |
+
audio_save[:audio.shape[-1]] = audio[:audio.shape[-1]]
|
30 |
+
|
31 |
+
# content = get_hubert_soft_content(model, torch.tensor(audio_save).unsqueeze(0))
|
32 |
+
content = get_content(model, torch.tensor(audio_save).unsqueeze(0))
|
33 |
+
content = content.cpu()
|
34 |
+
os.makedirs(os.path.dirname(save_path + '/' + 'content/' + audio_path), exist_ok=True)
|
35 |
+
torch.save(content, save_path + '/' + 'content/' + audio_path+'.pt')
|
36 |
+
# print(audio_save.shape)
|
37 |
+
# print(content.shape)
|
38 |
+
os.makedirs(os.path.dirname(save_path + '/' + 'audio_16k/' + audio_path), exist_ok=True)
|
39 |
+
sf.write(save_path + '/' + 'audio_16k/' + audio_path, audio_save, int(sr))
|
40 |
+
# print(save_path + '/' + 'audio_16k/' + audio_path)
|
41 |
+
|
42 |
+
audio, sr = librosa.load(infolder + audio_path, sr=audio_sr)
|
43 |
+
length = max(round(min_length*audio_sr), round(final_length/content_sr*audio_sr))
|
44 |
+
assert length % 10 == 0
|
45 |
+
audio = audio[:length]
|
46 |
+
audio_save = np.zeros(length, dtype=audio.dtype)
|
47 |
+
audio_save[:audio.shape[-1]] = audio[:audio.shape[-1]]
|
48 |
+
# print(audio_save.shape)
|
49 |
+
os.makedirs(os.path.dirname(save_path + '/' + 'audio_24k/' + audio_path), exist_ok=True)
|
50 |
+
sf.write(save_path + '/' + 'audio_24k/' + audio_path, audio_save, int(sr))
|
51 |
+
|
52 |
+
|
53 |
+
def extract_f0(in_folder, audio_path, save_path):
|
54 |
+
audio, sr = librosa.load(in_folder + audio_path, sr=None)
|
55 |
+
assert sr == 16000
|
56 |
+
if os.path.isfile(save_path + '/' + 'f0/' + audio_path + '.pt') is False:
|
57 |
+
# wav = audio
|
58 |
+
# wav = np.pad(wav, int((1024-320)/2), mode='reflect')
|
59 |
+
# f0_, _, _ = librosa.pyin(wav, frame_length=1024, hop_length=320, center=False, sr=sr,
|
60 |
+
# fmin=librosa.note_to_hz('C2'),
|
61 |
+
# fmax=librosa.note_to_hz('C6'))
|
62 |
+
|
63 |
+
_f0, t = pw.dio(audio.astype(np.float64), sr, frame_period=320 / sr * 1000)
|
64 |
+
f0 = pw.stonemask(audio.astype(np.float64), _f0, t, sr)[:-1]
|
65 |
+
|
66 |
+
f0 = np.nan_to_num(f0)
|
67 |
+
os.makedirs(os.path.dirname(save_path + '/' + 'f0/' + audio_path), exist_ok=True)
|
68 |
+
# print(save_path + '/' + 'f0/' + audio_path + '.pt')
|
69 |
+
torch.save(torch.tensor(f0), save_path + '/' + 'f0/' + audio_path + '.pt')
|
70 |
+
|
71 |
+
|
72 |
+
def chunks(arr, m):
|
73 |
+
result = [[] for i in range(m)]
|
74 |
+
for i in range(len(arr)):
|
75 |
+
result[i%m].append(arr[i])
|
76 |
+
return result
|
77 |
+
|
78 |
+
|
79 |
+
def extract_f0_main(in_folder, audio_paths, save_path):
|
80 |
+
for audio_path in tqdm(audio_paths):
|
81 |
+
extract_f0(in_folder, audio_path, save_path)
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == '__main__':
|
85 |
+
df = pd.read_csv('../test_data/vc_meta.csv')
|
86 |
+
# model = get_soft_model('../pre_ckpts/hubert_soft.pt').to('cuda')
|
87 |
+
model = get_content_model().to('cuda')
|
88 |
+
# # spk_encoder.load_model(Path('ckpts/spk_encoder/pretrained.pt'), device="cuda")
|
89 |
+
for i in tqdm(range(len(df))):
|
90 |
+
row = df.iloc[i]
|
91 |
+
in_path = row['path']
|
92 |
+
resample_save('../test_data/', in_path, model, save_path='../features/')
|
93 |
+
|
94 |
+
in_folder = '../features/audio_16k/'
|
95 |
+
audio_files = list(df['path'])
|
96 |
+
save_path = '../features/'
|
97 |
+
cores = 6
|
98 |
+
|
99 |
+
subsets = chunks(audio_files, cores)
|
100 |
+
|
101 |
+
for subset in subsets:
|
102 |
+
t = Process(target=extract_f0_main, args=(in_folder, subset, save_path))
|
103 |
+
t.start()
|
dreamvoice/src/feats/.ipynb_checkpoints/contentvec-checkpoint.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import librosa
|
3 |
+
from fairseq import checkpoint_utils
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
def get_model(vec_path):
|
8 |
+
print("load model(s) from {}".format(vec_path))
|
9 |
+
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
10 |
+
[vec_path],
|
11 |
+
suffix="",
|
12 |
+
)
|
13 |
+
model = models[0]
|
14 |
+
model.eval()
|
15 |
+
return model
|
16 |
+
|
17 |
+
|
18 |
+
@torch.no_grad()
|
19 |
+
def get_content(hmodel, wav_16k_tensor, device='cuda', layer=12):
|
20 |
+
# print(layer)
|
21 |
+
wav_16k_tensor = wav_16k_tensor.to(device)
|
22 |
+
# so that the output shape will be len(audio//320)
|
23 |
+
wav_16k_tensor = F.pad(wav_16k_tensor, ((400 - 320) // 2, (400 - 320) // 2))
|
24 |
+
feats = wav_16k_tensor
|
25 |
+
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
26 |
+
inputs = {
|
27 |
+
"source": feats.to(wav_16k_tensor.device),
|
28 |
+
"padding_mask": padding_mask.to(wav_16k_tensor.device),
|
29 |
+
"output_layer": layer
|
30 |
+
}
|
31 |
+
logits = hmodel.extract_features(**inputs)[0]
|
32 |
+
# feats = hmodel.final_proj(logits[0])
|
33 |
+
return logits
|
34 |
+
|
35 |
+
|
36 |
+
if __name__ == '__main__':
|
37 |
+
audio, sr = librosa.load('test.wav', sr=16000)
|
38 |
+
audio = audio[:100*320]
|
39 |
+
model = get_model('../../ckpts/checkpoint_best_legacy_500.pt')
|
40 |
+
model = model.cuda()
|
41 |
+
content = get_content(model, torch.tensor([audio]))
|
42 |
+
print(content)
|
dreamvoice/src/feats/.ipynb_checkpoints/contentvec_hf-checkpoint.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import HubertModel
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import librosa
|
6 |
+
|
7 |
+
|
8 |
+
class HubertModelWithFinalProj(HubertModel):
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__(config)
|
11 |
+
|
12 |
+
# The final projection layer is only used for backward compatibility.
|
13 |
+
# Following https://github.com/auspicious3000/contentvec/issues/6
|
14 |
+
# Remove this layer is necessary to achieve the desired outcome.
|
15 |
+
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
16 |
+
|
17 |
+
|
18 |
+
def get_content_model(config='lengyue233/content-vec-best'):
|
19 |
+
model = HubertModelWithFinalProj.from_pretrained(config)
|
20 |
+
model.eval()
|
21 |
+
return model
|
22 |
+
|
23 |
+
|
24 |
+
@torch.no_grad()
|
25 |
+
def get_content(model, wav_16k_tensor, device='cuda'):
|
26 |
+
# print(layer)
|
27 |
+
wav_16k_tensor = wav_16k_tensor.to(device)
|
28 |
+
# so that the output shape will be len(audio//320)
|
29 |
+
wav_16k_tensor = F.pad(wav_16k_tensor, ((400 - 320) // 2, (400 - 320) // 2))
|
30 |
+
logits = model(wav_16k_tensor)['last_hidden_state']
|
31 |
+
return logits
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
model = get_content_model().cuda()
|
36 |
+
audio, sr = librosa.load('test.wav', sr=16000)
|
37 |
+
audio = audio[:100*320]
|
38 |
+
audio = torch.tensor([audio])
|
39 |
+
content = get_content(model, audio, 'cuda')
|
40 |
+
print(content)
|
dreamvoice/src/feats/.ipynb_checkpoints/hubert_model-checkpoint.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, torchaudio
|
2 |
+
from .hubert.hubert import HubertSoft
|
3 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
4 |
+
import librosa
|
5 |
+
|
6 |
+
|
7 |
+
def get_soft_model(model_path):
|
8 |
+
hubert = HubertSoft()
|
9 |
+
# Load checkpoint (either hubert_soft or hubert_discrete)
|
10 |
+
# hubert = torch.hub.load("bshall/hubert:main", "hubert_soft", trust_repo=True)
|
11 |
+
checkpoint = torch.load(model_path)
|
12 |
+
consume_prefix_in_state_dict_if_present(checkpoint["hubert"], "module.")
|
13 |
+
hubert.load_state_dict(checkpoint["hubert"])
|
14 |
+
hubert.eval()
|
15 |
+
return hubert
|
16 |
+
|
17 |
+
|
18 |
+
@torch.no_grad()
|
19 |
+
def get_hubert_soft_content(hmodel, wav_16k_tensor, device='cuda'):
|
20 |
+
wav_16k_tensor = wav_16k_tensor.to(device).unsqueeze(1)
|
21 |
+
# print(wav_16k_tensor.shape)
|
22 |
+
units = hmodel.units(wav_16k_tensor)
|
23 |
+
# print(units.shape)
|
24 |
+
return units.cpu()
|
dreamvoice/src/feats/.ipynb_checkpoints/test-checkpoint.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, torchaudio
|
2 |
+
from hubert.hubert import HubertSoft
|
3 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
4 |
+
import librosa
|
5 |
+
|
6 |
+
|
7 |
+
def get_soft_model(model_path):
|
8 |
+
hubert = HubertSoft()
|
9 |
+
# Load checkpoint (either hubert_soft or hubert_discrete)
|
10 |
+
# hubert = torch.hub.load("bshall/hubert:main", "hubert_soft", trust_repo=True)
|
11 |
+
checkpoint = torch.load(model_path)
|
12 |
+
consume_prefix_in_state_dict_if_present(checkpoint["hubert"], "module.")
|
13 |
+
hubert.load_state_dict(checkpoint["hubert"])
|
14 |
+
hubert.eval()
|
15 |
+
return model
|
16 |
+
|
17 |
+
|
18 |
+
@torch.no_grad()
|
19 |
+
def get_hubert_soft_content(hmodel, wav_16k_tensor, device='cuda'):
|
20 |
+
wav_16k_tensor = wav_16k_tensor.to(device)
|
21 |
+
units = hmodel.units(wav_16k_tensor)
|
22 |
+
return units.cpu()
|
dreamvoice/src/feats/__pycache__/contentvec.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
dreamvoice/src/feats/__pycache__/contentvec.cpython-311.pyc
ADDED
Binary file (2.23 kB). View file
|
|
dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-310.pyc
ADDED
Binary file (1.45 kB). View file
|
|
dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-311.pyc
ADDED
Binary file (2.41 kB). View file
|
|
dreamvoice/src/feats/__pycache__/hubert_model.cpython-311.pyc
ADDED
Binary file (1.44 kB). View file
|
|
dreamvoice/src/feats/contentvec.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import librosa
|
3 |
+
from fairseq import checkpoint_utils
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
def get_model(vec_path):
|
8 |
+
print("load model(s) from {}".format(vec_path))
|
9 |
+
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
10 |
+
[vec_path],
|
11 |
+
suffix="",
|
12 |
+
)
|
13 |
+
model = models[0]
|
14 |
+
model.eval()
|
15 |
+
return model
|
16 |
+
|
17 |
+
|
18 |
+
@torch.no_grad()
|
19 |
+
def get_content(hmodel, wav_16k_tensor, device='cuda', layer=12):
|
20 |
+
# print(layer)
|
21 |
+
wav_16k_tensor = wav_16k_tensor.to(device)
|
22 |
+
# so that the output shape will be len(audio//320)
|
23 |
+
wav_16k_tensor = F.pad(wav_16k_tensor, ((400 - 320) // 2, (400 - 320) // 2))
|
24 |
+
feats = wav_16k_tensor
|
25 |
+
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
26 |
+
inputs = {
|
27 |
+
"source": feats.to(wav_16k_tensor.device),
|
28 |
+
"padding_mask": padding_mask.to(wav_16k_tensor.device),
|
29 |
+
"output_layer": layer
|
30 |
+
}
|
31 |
+
logits = hmodel.extract_features(**inputs)[0]
|
32 |
+
# feats = hmodel.final_proj(logits[0])
|
33 |
+
return logits
|
34 |
+
|
35 |
+
|
36 |
+
if __name__ == '__main__':
|
37 |
+
audio, sr = librosa.load('test.wav', sr=16000)
|
38 |
+
audio = audio[:100*320]
|
39 |
+
model = get_model('../../ckpts/checkpoint_best_legacy_500.pt')
|
40 |
+
model = model.cuda()
|
41 |
+
content = get_content(model, torch.tensor([audio]))
|
42 |
+
print(content)
|
dreamvoice/src/feats/contentvec_hf.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import HubertModel
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import librosa
|
6 |
+
|
7 |
+
|
8 |
+
class HubertModelWithFinalProj(HubertModel):
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__(config)
|
11 |
+
|
12 |
+
# The final projection layer is only used for backward compatibility.
|
13 |
+
# Following https://github.com/auspicious3000/contentvec/issues/6
|
14 |
+
# Remove this layer is necessary to achieve the desired outcome.
|
15 |
+
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
16 |
+
|
17 |
+
|
18 |
+
def get_content_model(config='lengyue233/content-vec-best'):
|
19 |
+
model = HubertModelWithFinalProj.from_pretrained(config)
|
20 |
+
model.eval()
|
21 |
+
return model
|
22 |
+
|
23 |
+
|
24 |
+
@torch.no_grad()
|
25 |
+
def get_content(model, wav_16k_tensor, device='cuda'):
|
26 |
+
# print(layer)
|
27 |
+
wav_16k_tensor = wav_16k_tensor.to(device)
|
28 |
+
# so that the output shape will be len(audio//320)
|
29 |
+
wav_16k_tensor = F.pad(wav_16k_tensor, ((400 - 320) // 2, (400 - 320) // 2))
|
30 |
+
logits = model(wav_16k_tensor)['last_hidden_state']
|
31 |
+
return logits
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
model = get_content_model().cuda()
|
36 |
+
audio, sr = librosa.load('test.wav', sr=16000)
|
37 |
+
audio = audio[:100*320]
|
38 |
+
audio = torch.tensor([audio])
|
39 |
+
content = get_content(model, audio, 'cuda')
|
40 |
+
print(content)
|
dreamvoice/src/feats/hubert/.gitignore
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# VSCode project settings
|
114 |
+
.vscode
|
115 |
+
|
116 |
+
# Spyder project settings
|
117 |
+
.spyderproject
|
118 |
+
.spyproject
|
119 |
+
|
120 |
+
# Rope project settings
|
121 |
+
.ropeproject
|
122 |
+
|
123 |
+
# mkdocs documentation
|
124 |
+
/site
|
125 |
+
|
126 |
+
# mypy
|
127 |
+
.mypy_cache/
|
128 |
+
.dmypy.json
|
129 |
+
dmypy.json
|
130 |
+
|
131 |
+
# Pyre type checker
|
132 |
+
.pyre/
|
dreamvoice/src/feats/hubert/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Benjamin van Niekerk
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|