--- language: - en - de - es - ru - zh base_model: - microsoft/mdeberta-v3-base - Unbabel/XCOMET-XXL --- # XCOMET-lite **Links:** [EMNLP 2024](https://aclanthology.org/2024.emnlp-main.1223/) | [Arxiv](https://arxiv.org/abs/2406.14553) | [Github repository](https://github.com/NL2G/xCOMET-lite) `XCOMET-lite` is a distilled version of [`Unbabel/XCOMET-XXL`](https://huggingface.co/Unbabel/XCOMET-XXL) — a machine translation evaluation model trained to provide an overall quality score between 0 and 1, where 1 represents a perfect translation. This model uses [`microsoft/mdeberta-v3-base`](https://huggingface.co/microsoft/deberta-v3-base) as its backbone and has 278 million parameters, making it approximately 38 times smaller than the 10.7 billion-parameter `XCOMET-XXL`. ## Quick Start 1. Clone the [GitHub repository](https://github.com/NL2G/xCOMET-lite). 2. Create a conda environment as instructed in the README. Then, run the following code: ``` from xcomet.deberta_encoder import XCOMETLite model = XCOMETLite().from_pretrained("myyycroft/XCOMET-lite") data = [ { "src": "Elon Musk has acquired Twitter and plans significant changes.", "mt": "Илон Маск приобрел Twitter и планировал значительные искажения.", "ref": "Илон Маск приобрел Twitter и планирует значительные изменения." }, { "src": "Elon Musk has acquired Twitter and plans significant changes.", "mt": "Илон Маск приобрел Twitter.", "ref": "Илон Маск приобрел Twitter и планирует значительные изменения." } ] model_output = model.predict(data, batch_size=2, gpus=1) print("Segment-level scores:", model_output.scores) ```