mzwing commited on
Commit
3bff96b
0 Parent(s):

GGUF model commit (made with llama.cpp commit 0a7c980)

Browse files
.gitattributes ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ AquilaChat2-7B-16K.F16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ AquilaChat2-7B-16K.Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
38
+ AquilaChat2-7B-16K.Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
39
+ AquilaChat2-7B-16K.Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
40
+ AquilaChat2-7B-16K.Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
41
+ AquilaChat2-7B-16K.Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
42
+ AquilaChat2-7B-16K.Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
43
+ AquilaChat2-7B-16K.Q5_0.gguf filter=lfs diff=lfs merge=lfs -text
44
+ AquilaChat2-7B-16K.Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
45
+ AquilaChat2-7B-16K.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
46
+ AquilaChat2-7B-16K.Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
47
+ AquilaChat2-7B-16K.Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
48
+ AquilaChat2-7B-16K.Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
49
+ AquilaChat2-7B-16K.F32.gguf filter=lfs diff=lfs merge=lfs -text
AquilaChat2-7B-16K.F16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cc9af03b92ceb697aee8aa843d9108bbfd05c4b13eed28758bbf43db9103a42
3
+ size 14596449856
AquilaChat2-7B-16K.F32.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4de9d9ab0d75208768106fc8cbb4a313a1e2f20d029056c46be39577498ea6b
3
+ size 29186991680
AquilaChat2-7B-16K.Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7036d19d86d55b3e75274a0906925b5abd9263ac255d891f1e5a4ebaf985ea00
3
+ size 2856875392
AquilaChat2-7B-16K.Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cd4d0199a6b66f17583cbf3ecc60ede36287e8271faf0c7a2d3731e51f8f461
3
+ size 3949414016
AquilaChat2-7B-16K.Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b04b9a620729f1a2da1d525e4a3a41fcd94cdf991e3df41def99dbb2f54533
3
+ size 3650307712
AquilaChat2-7B-16K.Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48f9caeeb7bde29a2b8a5522a6f8642fe0b2923f1d21c64114b8ab81bc83099c
3
+ size 3300607616
AquilaChat2-7B-16K.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ef8749c47c5ea2354196ad1d4b8d861bb4ccc2779064b8f211860f8b635cff7
3
+ size 4215106432
AquilaChat2-7B-16K.Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:589c4c6101fa7098d922468ef1b559fdf7f7a4574e21c05b512d7641462a575f
3
+ size 4470303616
AquilaChat2-7B-16K.Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1e9118541afa9cd409b95766515576db13828166bc1708edd87fd0933b2f48d
3
+ size 4246039424
AquilaChat2-7B-16K.Q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81f58a8b6e0f295b4d290725c74ea36dd75e2b91e3b9d51c7a12538c2c317955
3
+ size 5075811200
AquilaChat2-7B-16K.Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efbc53a834214bb54752447b67623b44de5372622f3d018998d609f88afa9a2f
3
+ size 5207276416
AquilaChat2-7B-16K.Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49c7823abea6b31c57f7ff7b916a81dc0322e62363cd7beeceedfd894a8fd2c7
3
+ size 5075811200
AquilaChat2-7B-16K.Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d036e986b610e8802d50fb60f6fbd6512336eef1dc22db35a8cf6bd35294f5a5
3
+ size 5990310016
AquilaChat2-7B-16K.Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43f00cfcdb3542ed4368b3fc46716311ca0a8c69a17a24a0fb7350af1dc93b1f
3
+ size 7757133440
README.md ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/AquilaChat2-7B-16K
3
+ inference: false
4
+ license: other
5
+ model_creator: Beijing Academy of Artificial Intelligence
6
+ model_name: Aquilachat2 7B 16K
7
+ model_type: aquila
8
+ prompt_template: >
9
+ System: A chat between a curious human and an artificial intelligence
10
+ assistant. The assistant gives helpful, detailed, and polite answers to the
11
+ human's questions.
12
+
13
+ Human: {prompt}
14
+
15
+ Assistant:
16
+ quantized_by: mzwing
17
+ ---
18
+
19
+ # AquilaChat2 7B 16K - GGUF
20
+ - Model creator: [Beijing Academy of Artificial Intelligence](https://huggingface.co/BAAI)
21
+ - Original model: [AquilaChat2 7B 16K](https://huggingface.co/BAAI/AquilaChat2-7B-16K)
22
+
23
+ <!-- description start -->
24
+ ## Description
25
+
26
+ This repo contains GGUF format model files for [Beijing Academy of Artificial Intelligence's Aquilachat2 7B 16K](https://huggingface.co/BAAI/AquilaChat2-7B-16K).
27
+
28
+ These files were quantised using hardware kindly provided by [Google Colab](https://colab.research.google.com/)(Free CPU Machine).
29
+
30
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mzwing/AI-related/blob/master/notebooks/AquilaChat2_7B_16K_GGUF.ipynb)
31
+
32
+ You can also check it out easily in [my GitHub repo](https://github.com/mzwing/AI-related/blob/master/notebooks/AquilaChat2_7B_16K_GGUF.ipynb).
33
+
34
+ <!-- description end -->
35
+ <!-- README_GGUF.md-about-gguf start -->
36
+ ### About GGUF
37
+
38
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
39
+
40
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
41
+
42
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
43
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
44
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
45
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
46
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
47
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
48
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
49
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
50
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
51
+ * [Nitro](https://nitro.jan.ai/), a fast, lightweight 3mb inference server to supercharge apps with local AI, and OpenAI-compatible API server.
52
+
53
+ <!-- README_GGUF.md-about-gguf end -->
54
+ <!-- repositories-available start -->
55
+ ## Repositories available
56
+
57
+ * [2, 3, 4, 5, 6, 8, 16 and 32-bit GGUF models for CPU+GPU inference](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF)
58
+ * [Beijing Academy of Artificial Intelligence's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/BAAI/AquilaChat2-7B-16K)
59
+ <!-- repositories-available end -->
60
+
61
+ <!-- prompt-template start -->
62
+ ## Prompt template: AquilaChat
63
+
64
+ ```
65
+ System: A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
66
+ Human: {prompt}
67
+ Assistant:
68
+
69
+ ```
70
+
71
+ <!-- prompt-template end -->
72
+
73
+ <!-- compatibility_gguf start -->
74
+ ## Compatibility
75
+
76
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
77
+
78
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
79
+
80
+ ## Explanation of quantisation methods
81
+
82
+ <details>
83
+ <summary>Click to see details</summary>
84
+
85
+ The new methods available are:
86
+
87
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
88
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
89
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
90
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
91
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
92
+
93
+ Refer to the Provided Files table below to see what files use which methods, and how.
94
+ </details>
95
+ <!-- compatibility_gguf end -->
96
+
97
+ <!-- README_GGUF.md-provided-files start -->
98
+ ## Provided files
99
+
100
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
101
+ | ---- | ---- | ---- | ---- | ---- | ----- |
102
+ | [AquilaChat2-7B-16K.Q2_K.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q2_K.gguf) | Q2_K | 2 | 2.86 GB | untested yet | smallest, significant quality loss - not recommended for most purposes |
103
+ | [AquilaChat2-7B-16K.Q3_K_S.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q3_K_S.gguf) | Q3_K_S | 3 | 3.3 GB | untested yet | very small, high quality loss |
104
+ | [AquilaChat2-7B-16K.Q3_K_M.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q3_K_M.gguf) | Q3_K_M | 3 | 3.65 GB | untested yet | very small, high quality loss |
105
+ | [AquilaChat2-7B-16K.Q3_K_L.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q3_K_L.gguf) | Q3_K_L | 3 | 3.95 GB | untested yet | small, substantial quality loss |
106
+ | [AquilaChat2-7B-16K.Q4_0.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q4_0.gguf) | Q4_0 | 4 | 4.22 GB | untested yet | legacy; small, very high quality loss - prefer using Q3_K_M |
107
+ | [AquilaChat2-7B-16K.Q4_K_S.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q4_K_S.gguf) | Q4_K_S | 4 | 4.25 GB | untested yet | small, greater quality loss |
108
+ | [AquilaChat2-7B-16K.Q4_K_M.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q4_K_M.gguf) | Q4_K_M | 4 | 4.47 GB | untested yet | medium, balanced quality - recommended |
109
+ | [AquilaChat2-7B-16K.Q5_0.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q5_0.gguf) | Q5_0 | 5 | 5.08 GB | untested yet | legacy; medium, balanced quality - prefer using Q4_K_M |
110
+ | [AquilaChat2-7B-16K.Q5_K_S.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q5_K_S.gguf) | Q5_K_S | 5 | 5.08 GB | untested yet | large, low quality loss - recommended |
111
+ | [AquilaChat2-7B-16K.Q5_K_M.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q5_K_M.gguf) | Q5_K_M | 5 | 5.21 GB | untested yet | large, very low quality loss - recommended |
112
+ | [AquilaChat2-7B-16K.Q6_K.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q6_K.gguf) | Q6_K | 6 | 5.99 GB | untested yet | very large, extremely low quality loss |
113
+ | [AquilaChat2-7B-16K.Q8_0.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.Q8_0.gguf) | Q8_0 | 8 | 7.76 GB | untested yet | very large, extremely low quality loss - not recommended |
114
+ | [AquilaChat2-7B-16K.F16.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.F16.gguf) | F16 | 16 | 14.6 GB | untested yet | extremely large, extremely low quality loss - not recommended |
115
+ | [AquilaChat2-7B-16K.F32.gguf](https://huggingface.co/mzwing/AquilaChat2-7B-16K-GGUF/blob/main/AquilaChat2-7B-16K.F32.gguf) | F32 | 32 | 29.2 GB | untested yet | extremely large, extremely low quality loss - not recommended |
116
+
117
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
118
+
119
+ <!-- README_GGUF.md-provided-files end -->
120
+
121
+ <!-- README_GGUF.md-how-to-download start -->
122
+ ## How to download GGUF files
123
+
124
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
125
+
126
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
127
+
128
+ * LM Studio
129
+ * LoLLMS Web UI
130
+ * Faraday.dev
131
+
132
+ ### In `text-generation-webui`
133
+
134
+ Under Download Model, you can enter the model repo: `mzwing/AquilaChat2-7B-16K-GGUF`, and below it, a specific filename to download, such as: `AquilaChat2-7B-16K.Q4_K_M.gguf`.
135
+
136
+ Then click Download.
137
+
138
+ ### On the command line, including multiple files at once
139
+
140
+ I recommend using the `huggingface-hub` Python library:
141
+
142
+ ```shell
143
+ pip3 install huggingface-hub
144
+ ```
145
+
146
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
147
+
148
+ ```shell
149
+ huggingface-cli download mzwing/AquilaChat2-7B-16K-GGUF AquilaChat2-7B-16K.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
150
+ ```
151
+
152
+ <details>
153
+ <summary>More advanced huggingface-cli download usage</summary>
154
+
155
+ You can also download multiple files at once with a pattern:
156
+
157
+ ```shell
158
+ huggingface-cli download mzwing/AquilaChat2-7B-16K-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
159
+ ```
160
+
161
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
162
+
163
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
164
+
165
+ ```shell
166
+ pip3 install hf_transfer
167
+ ```
168
+
169
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
170
+
171
+ ```shell
172
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download mzwing/AquilaChat2-7B-16K-GGUF AquilaChat2-7B-16K.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
173
+ ```
174
+
175
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
176
+ </details>
177
+ <!-- README_GGUF.md-how-to-download end -->
178
+
179
+ <!-- README_GGUF.md-how-to-run start -->
180
+ ## Example `llama.cpp` command
181
+
182
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
183
+
184
+ ```shell
185
+ ./main -ngl 32 -m AquilaChat2-7B-16K.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "System: A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nHuman: {prompt}\nAssistant:"
186
+ ```
187
+
188
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
189
+
190
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
191
+
192
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
193
+
194
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
195
+
196
+ ## How to run in `text-generation-webui`
197
+
198
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
199
+
200
+ ## How to run from Python code
201
+
202
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
203
+
204
+ ### How to load this model in Python code, using ctransformers
205
+
206
+ #### First install the package
207
+
208
+ Run one of the following commands, according to your system:
209
+
210
+ ```shell
211
+ # Base ctransformers with no GPU acceleration
212
+ pip install ctransformers
213
+ # Or with CUDA GPU acceleration
214
+ pip install ctransformers[cuda]
215
+ # Or with AMD ROCm GPU acceleration (Linux only)
216
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
217
+ # Or with Metal GPU acceleration for macOS systems only
218
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
219
+ ```
220
+
221
+ #### Simple ctransformers example code
222
+
223
+ ```python
224
+ from ctransformers import AutoModelForCausalLM
225
+
226
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
227
+ llm = AutoModelForCausalLM.from_pretrained("mzwing/AquilaChat2-7B-16K-GGUF", model_file="AquilaChat2-7B-16K.Q4_K_M.gguf", model_type="aquila", gpu_layers=50)
228
+
229
+ print(llm("AI is going to"))
230
+ ```
231
+
232
+ ## How to use with LangChain
233
+
234
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
235
+
236
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
237
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
238
+
239
+ <!-- README_GGUF.md-how-to-run end -->
240
+
241
+ <!-- footer start -->
242
+ <!-- 200823 -->
243
+ ## Thanks, and how to contribute
244
+
245
+ Thanks to [Google Colab](https://colab.research.google.com/)! All the quantised models in this repo are done on the awesome platform. Thanks a lot!
246
+
247
+ Thanks to [llama.cpp](https://github.com/ggerganov/llama.cpp)! It inspired me to explore the inspiring AI field, thanks!
248
+
249
+ Thanks to [TheBloke](https://huggingface.co/TheBloke)! Everything in this repo is a reference to him.
250
+
251
+ You are welcome to create a **PullRequest**! Especially for the **RAM Usage**!
252
+
253
+ <!-- footer end -->
254
+
255
+ <!-- original-model-card start -->
256
+ # Original model card: Beijing Academy of Artificial Intelligence's Aquilachat2 7B 16K
257
+
258
+
259
+ ![Aquila_logo](https://huggingface.co/BAAI/AquilaChat2-7B-16K/resolve/main/log.jpeg?download=true)
260
+
261
+
262
+ <h4 align="center">
263
+ <p>
264
+ <b>English</b> |
265
+ <a href="https://huggingface.co/BAAI/AquilaChat2-7B-16K/blob/main/README_zh.md">简体中文</a>
266
+ </p>
267
+ </h4>
268
+
269
+
270
+ We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B** and **Aquila2-34B**, as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B** and **AquilaChat2-34B**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k**
271
+
272
+ The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels.
273
+
274
+ ## Quick Start AquilaChat2-7B-16K(Chat model)
275
+
276
+ ### 1. Inference
277
+
278
+ ```python
279
+ import torch
280
+ from transformers import AutoTokenizer, AutoModelForCausalLM
281
+ from transformers import BitsAndBytesConfig
282
+
283
+ device = torch.device("cuda:0")
284
+ model_info = "BAAI/AquilaChat2-7B-16K"
285
+ tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
286
+ quantization_config=BitsAndBytesConfig(
287
+ load_in_4bit=True,
288
+ bnb_4bit_use_double_quant=True,
289
+ bnb_4bit_quant_type="nf4",
290
+ bnb_4bit_compute_dtype=torch.bfloat16,
291
+ )
292
+ model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True, torch_dtype=torch.float16,
293
+ # quantization_config=quantization_config, # Uncomment this line for 4bit quantization
294
+ )
295
+ model.eval()
296
+ model.to(device)
297
+ text = "请给出10个要到北京旅游的理由。"
298
+ from predict import predict
299
+ out = predict(model, text, tokenizer=tokenizer, max_gen_len=200, top_p=0.95,
300
+ seed=1234, topk=100, temperature=0.9, sft=True, device=device,
301
+ model_name="AquilaChat2-7B-16K")
302
+ print(out)
303
+ ```
304
+
305
+ ## License
306
+
307
+ Aquila2 series open-source model is licensed under [BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/AquilaChat2-7B-16K/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf)
308
+
309
+ <!-- original-model-card end -->