naamalia23 commited on
Commit
42ede08
1 Parent(s): 1d98a17

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -1
README.md CHANGED
@@ -1 +1,105 @@
1
- README.MD
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - HuggingFaceFW/fineweb-edu
5
+ language:
6
+ - en
7
+ - is
8
+ metrics:
9
+ - accuracy
10
+ library_name: flair
11
+ pipeline_tag: image-classification
12
+ tags:
13
+ - not-for-all-audiences
14
+ ---
15
+
16
+ # Model Card for Custom CNN Model for Garbage Classification
17
+
18
+ This model card provides information about a custom Convolutional Neural Network (CNN) designed for classifying images of garbage items into predefined categories.
19
+
20
+ ## Model Details
21
+
22
+ ### Model Description
23
+
24
+ The CNN architecture (CNNModel) consists of:
25
+
26
+ - Four convolutional layers with batch normalization, ReLU activation, max pooling, and dropout for feature extraction.
27
+ - Two fully connected layers for classification.
28
+
29
+ The model is trained using the Adam optimizer with cross-entropy loss and a ReduceLROnPlateau scheduler.
30
+
31
+ ### Model Source
32
+
33
+ - **Repository:** [Link to repository]
34
+ - **Demo:** [Link to demo]
35
+ - **License:** Apache 2.0
36
+
37
+ ## Uses
38
+
39
+ ### Direct Use
40
+
41
+ This model can be used to classify images of garbage items into specific categories.
42
+
43
+ ### Downstream Use
44
+
45
+ Fine-tuning the model on a specific garbage classification dataset or integrating it into an application for waste management.
46
+
47
+ ### Out-of-Scope Use
48
+
49
+ This model is not suitable for general image classification tasks outside of garbage classification.
50
+
51
+ ## Bias, Risks, and Limitations
52
+
53
+ The model's performance may be affected by biases in the training data, such as underrepresentation of certain garbage types.
54
+
55
+ ### Recommendations
56
+
57
+ Users should be aware of the model's limitations and consider domain-specific data augmentation to improve performance.
58
+
59
+ ## How to Get Started with the Model
60
+
61
+ ### Example Usage
62
+
63
+ ```python
64
+ import torch
65
+ from torchvision import transforms
66
+ from PIL import Image
67
+
68
+ # Define your CNN model
69
+ class CNNModel(nn.Module):
70
+ def __init__(self, num_classes):
71
+ # Define layers as per your CNNModel definition
72
+
73
+ def forward(self, x):
74
+ # Define forward pass as per your CNNModel forward method
75
+
76
+ # Set device to GPU if available
77
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
78
+
79
+ # Load the model
80
+ model = CNNModel(num_classes=num_classes).to(device)
81
+
82
+ # Load the best trained weights
83
+ model.load_state_dict(torch.load('best_model.pth'))
84
+ model.eval()
85
+
86
+ # Preprocess an image
87
+ transform = transforms.Compose([
88
+ transforms.Resize((224, 224)),
89
+ transforms.ToTensor(),
90
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
91
+ ])
92
+
93
+ img_path = 'path_to_your_image.jpg' # Replace with your image path
94
+ img = Image.open(img_path)
95
+ input_tensor = transform(img)
96
+ input_batch = input_tensor.unsqueeze(0)
97
+
98
+ # Use the model for prediction
99
+ with torch.no_grad():
100
+ output = model(input_batch)
101
+
102
+ # Get the predicted class
103
+ _, predicted = torch.max(output, 1)
104
+ predicted_class = train_dataset.classes[predicted.item()]
105
+ print(f'Predicted class: {predicted_class}')