File size: 2,493 Bytes
e13cb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d5919
 
e13cb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d5919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13cb68
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: docketanalyzer/docket-lm-xs
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: initial_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# initial_model

This model is a fine-tuned version of [docketanalyzer/docket-lm-xs](https://huggingface.co/docketanalyzer/docket-lm-xs) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0187
- F1: 0.9938

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1     |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.2297        | 0.0533 | 60   | 0.1805          | 0.9693 |
| 0.1411        | 0.1067 | 120  | 0.0593          | 0.9850 |
| 0.0099        | 0.16   | 180  | 0.0447          | 0.9908 |
| 0.0348        | 0.2133 | 240  | 0.0474          | 0.9892 |
| 0.0046        | 0.2667 | 300  | 0.0379          | 0.9923 |
| 0.0031        | 0.32   | 360  | 0.0334          | 0.9938 |
| 0.127         | 0.3733 | 420  | 0.0325          | 0.9933 |
| 0.1795        | 0.4267 | 480  | 0.0325          | 0.9928 |
| 0.0023        | 0.48   | 540  | 0.0364          | 0.9933 |
| 0.0028        | 0.5333 | 600  | 0.0353          | 0.9923 |
| 0.0043        | 0.5867 | 660  | 0.0290          | 0.9933 |
| 0.1299        | 0.64   | 720  | 0.0252          | 0.9938 |
| 0.188         | 0.6933 | 780  | 0.0235          | 0.9933 |
| 0.0019        | 0.7467 | 840  | 0.0208          | 0.9938 |
| 0.002         | 0.8    | 900  | 0.0199          | 0.9938 |
| 0.0525        | 0.8533 | 960  | 0.0192          | 0.9938 |
| 0.008         | 0.9067 | 1020 | 0.0190          | 0.9938 |
| 0.0013        | 0.96   | 1080 | 0.0193          | 0.9938 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.14.4
- Tokenizers 0.19.1