File size: 24,055 Bytes
f04d740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import os
import sys
import cv2
from PIL import Image
import numpy as np
import gradio as gr

from modules import processing, images
from modules import scripts, script_callbacks, shared, devices, modelloader
from modules.processing import Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
from modules.shared import opts, cmd_opts, state
from modules.sd_models import model_hash
from modules.paths import models_path
from basicsr.utils.download_util import load_file_from_url

dd_models_path = os.path.join(models_path, "mmdet")

def list_models(model_path):
        model_list = modelloader.load_models(model_path=model_path, ext_filter=[".pth"])
        
        def modeltitle(path, shorthash):
            abspath = os.path.abspath(path)

            if abspath.startswith(model_path):
                name = abspath.replace(model_path, '')
            else:
                name = os.path.basename(path)

            if name.startswith("\\") or name.startswith("/"):
                name = name[1:]

            shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]

            return f'{name} [{shorthash}]', shortname
        
        models = []
        for filename in model_list:
            h = model_hash(filename)
            title, short_model_name = modeltitle(filename, h)
            models.append(title)
        
        return models

def startup():
    from launch import is_installed, run
    if not is_installed("mmdet"):
        python = sys.executable
        run(f'"{python}" -m pip install -U openmim==0.3.7', desc="Installing openmim", errdesc="Couldn't install openmim")
        run(f'"{python}" -m mim install mmcv-full==1.7.1', desc=f"Installing mmcv-full", errdesc=f"Couldn't install mmcv-full")
        run(f'"{python}" -m pip install mmdet==2.28.2', desc=f"Installing mmdet", errdesc=f"Couldn't install mmdet")

    if (len(list_models(dd_models_path)) == 0):
        print("No detection models found, downloading...")
        bbox_path = os.path.join(dd_models_path, "bbox")
        segm_path = os.path.join(dd_models_path, "segm")
        load_file_from_url("https://huggingface.co/dustysys/ddetailer/resolve/main/mmdet/bbox/mmdet_anime-face_yolov3.pth", bbox_path)
        load_file_from_url("https://huggingface.co/dustysys/ddetailer/raw/main/mmdet/bbox/mmdet_anime-face_yolov3.py", bbox_path)
        load_file_from_url("https://huggingface.co/dustysys/ddetailer/resolve/main/mmdet/segm/mmdet_dd-person_mask2former.pth", segm_path)
        load_file_from_url("https://huggingface.co/dustysys/ddetailer/raw/main/mmdet/segm/mmdet_dd-person_mask2former.py", segm_path)

startup()

def gr_show(visible=True):
    return {"visible": visible, "__type__": "update"}

class DetectionDetailerScript(scripts.Script):
    def title(self):
        return "Detection Detailer"
    
    def show(self, is_img2img):
        return True

    def ui(self, is_img2img):
        import modules.ui

        model_list = list_models(dd_models_path)
        model_list.insert(0, "None")
        if is_img2img:
            info = gr.HTML("<p style=\"margin-bottom:0.75em\">Recommended settings: Use from inpaint tab, inpaint at full res ON, denoise <0.5</p>")
        else:
            info = gr.HTML("")
        with gr.Group():
            with gr.Row():
                dd_model_a = gr.Dropdown(label="Primary detection model (A)", choices=model_list,value = "None", visible=True, type="value")
            
            with gr.Row():
                dd_conf_a = gr.Slider(label='Detection confidence threshold % (A)', minimum=0, maximum=100, step=1, value=30, visible=False)
                dd_dilation_factor_a = gr.Slider(label='Dilation factor (A)', minimum=0, maximum=255, step=1, value=4, visible=False)

            with gr.Row():
                dd_offset_x_a = gr.Slider(label='X offset (A)', minimum=-200, maximum=200, step=1, value=0, visible=False)
                dd_offset_y_a = gr.Slider(label='Y offset (A)', minimum=-200, maximum=200, step=1, value=0, visible=False)
            
            with gr.Row():
                dd_preprocess_b = gr.Checkbox(label='Inpaint model B detections before model A runs', value=False, visible=False)
                dd_bitwise_op = gr.Radio(label='Bitwise operation', choices=['None', 'A&B', 'A-B'], value="None", visible=False)  
        
        br = gr.HTML("<br>")

        with gr.Group():
            with gr.Row():
                dd_model_b = gr.Dropdown(label="Secondary detection model (B) (optional)", choices=model_list,value = "None", visible =False, type="value")

            with gr.Row():
                dd_conf_b = gr.Slider(label='Detection confidence threshold % (B)', minimum=0, maximum=100, step=1, value=30, visible=False)
                dd_dilation_factor_b = gr.Slider(label='Dilation factor (B)', minimum=0, maximum=255, step=1, value=4, visible=False)
            
            with gr.Row():
                dd_offset_x_b = gr.Slider(label='X offset (B)', minimum=-200, maximum=200, step=1, value=0, visible=False)
                dd_offset_y_b = gr.Slider(label='Y offset (B)', minimum=-200, maximum=200, step=1, value=0, visible=False)
        
        with gr.Group():
            with gr.Row():
                dd_mask_blur = gr.Slider(label='Mask blur ', minimum=0, maximum=64, step=1, value=4, visible=(not is_img2img))
                dd_denoising_strength = gr.Slider(label='Denoising strength (Inpaint)', minimum=0.0, maximum=1.0, step=0.01, value=0.4, visible=(not is_img2img))
            
            with gr.Row():
                dd_inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution ', value=True, visible = (not is_img2img))
                dd_inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels ', minimum=0, maximum=256, step=4, value=32, visible=(not is_img2img))

            with gr.Row():
                dd_mimic_cfg = gr.Slider(label='Mimic CFG Scale', minimum=0, maximum=30, step=0.5, value=7, visible=True)

        dd_model_a.change(
            lambda modelname: {
                dd_model_b:gr_show( modelname != "None" ),
                dd_conf_a:gr_show( modelname != "None" ),
                dd_dilation_factor_a:gr_show( modelname != "None"),
                dd_offset_x_a:gr_show( modelname != "None" ),
                dd_offset_y_a:gr_show( modelname != "None" )

            },
            inputs= [dd_model_a],
            outputs =[dd_model_b, dd_conf_a, dd_dilation_factor_a, dd_offset_x_a, dd_offset_y_a]
        )

        dd_model_b.change(
            lambda modelname: {
                dd_preprocess_b:gr_show( modelname != "None" ),
                dd_bitwise_op:gr_show( modelname != "None" ),
                dd_conf_b:gr_show( modelname != "None" ),
                dd_dilation_factor_b:gr_show( modelname != "None"),
                dd_offset_x_b:gr_show( modelname != "None" ),
                dd_offset_y_b:gr_show( modelname != "None" )
            },
            inputs= [dd_model_b],
            outputs =[dd_preprocess_b, dd_bitwise_op, dd_conf_b, dd_dilation_factor_b, dd_offset_x_b, dd_offset_y_b]
        )
        
        return [info,
                dd_model_a, 
                dd_conf_a, dd_dilation_factor_a,
                dd_offset_x_a, dd_offset_y_a,
                dd_preprocess_b, dd_bitwise_op, 
                br,
                dd_model_b,
                dd_conf_b, dd_dilation_factor_b,
                dd_offset_x_b, dd_offset_y_b,  
                dd_mask_blur, dd_denoising_strength,
                dd_inpaint_full_res, dd_inpaint_full_res_padding,
                dd_mimic_cfg
        ]

    def run(self, p, info,
                     dd_model_a, 
                     dd_conf_a, dd_dilation_factor_a,
                     dd_offset_x_a, dd_offset_y_a,
                     dd_preprocess_b, dd_bitwise_op, 
                     br,
                     dd_model_b,
                     dd_conf_b, dd_dilation_factor_b,
                     dd_offset_x_b, dd_offset_y_b,  
                     dd_mask_blur, dd_denoising_strength,
                     dd_inpaint_full_res, dd_inpaint_full_res_padding,
                     dd_mimic_cfg):

        processing.fix_seed(p)
        initial_info = None
        seed = p.seed
        p.batch_size = 1
        ddetail_count = p.n_iter
        p.n_iter = 1
        p.do_not_save_grid = True
        p.do_not_save_samples = True
        is_txt2img = isinstance(p, StableDiffusionProcessingTxt2Img)
        if (not is_txt2img):
            orig_image = p.init_images[0]
        else:
            p_txt = p
            print(f"mimic_scale = {dd_mimic_cfg}")
            p = StableDiffusionProcessingImg2Img(
                    init_images = None,
                    resize_mode = 0,
                    denoising_strength = dd_denoising_strength,
                    mask = None,
                    mask_blur= dd_mask_blur,
                    inpainting_fill = 1,
                    inpaint_full_res = dd_inpaint_full_res,
                    inpaint_full_res_padding= dd_inpaint_full_res_padding,
                    inpainting_mask_invert= 0,
                    sd_model=p_txt.sd_model,
                    outpath_samples=p_txt.outpath_samples,
                    outpath_grids=p_txt.outpath_grids,
                    prompt=p_txt.prompt,
                    negative_prompt=p_txt.negative_prompt,
                    styles=p_txt.styles,
                    seed=p_txt.seed,
                    subseed=p_txt.subseed,
                    subseed_strength=p_txt.subseed_strength,
                    seed_resize_from_h=p_txt.seed_resize_from_h,
                    seed_resize_from_w=p_txt.seed_resize_from_w,
                    sampler_name=p_txt.sampler_name,
                    n_iter=p_txt.n_iter,
                    steps=p_txt.steps,
                    cfg_scale=dd_mimic_cfg,
                    width=p_txt.width,
                    height=p_txt.height,
                    tiling=p_txt.tiling,
                )
            p.do_not_save_grid = True
            p.do_not_save_samples = True
        output_images = []
        state.job_count = ddetail_count
        for n in range(ddetail_count):
            devices.torch_gc()
            start_seed = seed + n
            if ( is_txt2img ):
                print(f"Processing initial image for output generation {n + 1}.")
                p_txt.seed = start_seed
                processed = processing.process_images(p_txt)
                init_image = processed.images[0]   
            else: 
                init_image = orig_image
            
            output_images.append(init_image)
            masks_a = []
            masks_b_pre = []

            # Optional secondary pre-processing run
            if (dd_model_b != "None" and dd_preprocess_b): 
                label_b_pre = "B"
                results_b_pre = inference(init_image, dd_model_b, dd_conf_b/100.0, label_b_pre)
                masks_b_pre = create_segmasks(results_b_pre)
                masks_b_pre = dilate_masks(masks_b_pre, dd_dilation_factor_b, 1)
                masks_b_pre = offset_masks(masks_b_pre,dd_offset_x_b, dd_offset_y_b)
                if (len(masks_b_pre) > 0):
                    results_b_pre = update_result_masks(results_b_pre, masks_b_pre)
                    segmask_preview_b = create_segmask_preview(results_b_pre, init_image)
                    shared.state.current_image = segmask_preview_b
                    if ( opts.dd_save_previews):
                        images.save_image(segmask_preview_b, opts.outdir_ddetailer_previews, "", start_seed, p.prompt, opts.samples_format, p=p)
                    gen_count = len(masks_b_pre)
                    state.job_count += gen_count
                    print(f"Processing {gen_count} model {label_b_pre} detections for output generation {n + 1}.")
                    p.seed = start_seed
                    p.init_images = [init_image]

                    for i in range(gen_count):
                        p.image_mask = masks_b_pre[i]
                        if ( opts.dd_save_masks):
                            images.save_image(masks_b_pre[i], opts.outdir_ddetailer_masks, "", start_seed, p.prompt, opts.samples_format, p=p)
                        processed = processing.process_images(p)
                        p.seed = processed.seed + 1
                        p.init_images = processed.images

                    if (gen_count > 0):
                        output_images[n] = processed.images[0]
                        init_image = processed.images[0]

                else:
                    print(f"No model B detections for output generation {n} with current settings.")

            # Primary run
            if (dd_model_a != "None"):
                label_a = "A"
                if (dd_model_b != "None" and dd_bitwise_op != "None"):
                    label_a = dd_bitwise_op
                results_a = inference(init_image, dd_model_a, dd_conf_a/100.0, label_a)
                masks_a = create_segmasks(results_a)
                masks_a = dilate_masks(masks_a, dd_dilation_factor_a, 1)
                masks_a = offset_masks(masks_a,dd_offset_x_a, dd_offset_y_a)
                if (dd_model_b != "None" and dd_bitwise_op != "None"):
                    label_b = "B"
                    results_b = inference(init_image, dd_model_b, dd_conf_b/100.0, label_b)
                    masks_b = create_segmasks(results_b)
                    masks_b = dilate_masks(masks_b, dd_dilation_factor_b, 1)
                    masks_b = offset_masks(masks_b,dd_offset_x_b, dd_offset_y_b)
                    if (len(masks_b) > 0):
                        combined_mask_b = combine_masks(masks_b)
                        for i in reversed(range(len(masks_a))):
                            if (dd_bitwise_op == "A&B"):
                                masks_a[i] = bitwise_and_masks(masks_a[i], combined_mask_b)
                            elif (dd_bitwise_op == "A-B"):
                                masks_a[i] = subtract_masks(masks_a[i], combined_mask_b)
                            if (is_allblack(masks_a[i])):
                                del masks_a[i]
                                for result in results_a:
                                    del result[i]
                                    
                    else:
                        print("No model B detections to overlap with model A masks")
                        results_a = []
                        masks_a = []
                
                if (len(masks_a) > 0):
                    results_a = update_result_masks(results_a, masks_a)
                    segmask_preview_a = create_segmask_preview(results_a, init_image)
                    shared.state.current_image = segmask_preview_a
                    if ( opts.dd_save_previews):
                        images.save_image(segmask_preview_a, opts.outdir_ddetailer_previews, "", start_seed, p.prompt, opts.samples_format, p=p)
                    gen_count = len(masks_a)
                    state.job_count += gen_count
                    print(f"Processing {gen_count} model {label_a} detections for output generation {n + 1}.")
                    p.seed = start_seed
                    p.init_images = [init_image]

                    for i in range(gen_count):
                        p.image_mask = masks_a[i]
                        if ( opts.dd_save_masks):
                            images.save_image(masks_a[i], opts.outdir_ddetailer_masks, "", start_seed, p.prompt, opts.samples_format, p=p)
                        
                        processed = processing.process_images(p)
                        if initial_info is None:
                            initial_info = processed.info
                        p.seed = processed.seed + 1
                        p.init_images = processed.images
                    
                    if (gen_count > 0):
                        output_images[n] = processed.images[0]
                        if ( opts.samples_save ):
                            images.save_image(processed.images[0], p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
  
                else: 
                    print(f"No model {label_a} detections for output generation {n} with current settings.")
            state.job = f"Generation {n + 1} out of {state.job_count}"
        if (initial_info is None):
            initial_info = "No detections found."

        return Processed(p, output_images, seed, initial_info)

def modeldataset(model_shortname):
    path = modelpath(model_shortname)
    if ("mmdet" in path and "segm" in path):
        dataset = 'coco'
    else:
        dataset = 'bbox'
    return dataset

def modelpath(model_shortname):
    model_list = modelloader.load_models(model_path=dd_models_path, ext_filter=[".pth"])
    model_h = model_shortname.split("[")[-1].split("]")[0]
    for path in model_list:
        if ( model_hash(path) == model_h):
            return path

def update_result_masks(results, masks):
    for i in range(len(masks)):
        boolmask = np.array(masks[i], dtype=bool)
        results[2][i] = boolmask
    return results

def create_segmask_preview(results, image):
    labels = results[0]
    bboxes = results[1]
    segms = results[2]

    cv2_image = np.array(image)
    cv2_image = cv2_image[:, :, ::-1].copy()

    for i in range(len(segms)):
        color = np.full_like(cv2_image, np.random.randint(100, 256, (1, 3), dtype=np.uint8))
        alpha = 0.2
        color_image = cv2.addWeighted(cv2_image, alpha, color, 1-alpha, 0)
        cv2_mask = segms[i].astype(np.uint8) * 255
        cv2_mask_bool = np.array(segms[i], dtype=bool)
        centroid = np.mean(np.argwhere(cv2_mask_bool),axis=0)
        centroid_x, centroid_y = int(centroid[1]), int(centroid[0])

        cv2_mask_rgb = cv2.merge((cv2_mask, cv2_mask, cv2_mask))
        cv2_image = np.where(cv2_mask_rgb == 255, color_image, cv2_image)
        text_color = tuple([int(x) for x in ( color[0][0] - 100 )])
        name = labels[i]
        score = bboxes[i][4]
        score = str(score)[:4]
        text = name + ":" + score
        cv2.putText(cv2_image, text, (centroid_x - 30, centroid_y), cv2.FONT_HERSHEY_DUPLEX, 0.4, text_color, 1, cv2.LINE_AA)
    
    if ( len(segms) > 0):
        preview_image = Image.fromarray(cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB))
    else:
        preview_image = image

    return preview_image

def is_allblack(mask):
    cv2_mask = np.array(mask)
    return cv2.countNonZero(cv2_mask) == 0

def bitwise_and_masks(mask1, mask2):
    cv2_mask1 = np.array(mask1)
    cv2_mask2 = np.array(mask2)
    cv2_mask = cv2.bitwise_and(cv2_mask1, cv2_mask2)
    mask = Image.fromarray(cv2_mask)
    return mask

def subtract_masks(mask1, mask2):
    cv2_mask1 = np.array(mask1)
    cv2_mask2 = np.array(mask2)
    cv2_mask = cv2.subtract(cv2_mask1, cv2_mask2)
    mask = Image.fromarray(cv2_mask)
    return mask

def dilate_masks(masks, dilation_factor, iter=1):
    if dilation_factor == 0:
        return masks
    dilated_masks = []
    kernel = np.ones((dilation_factor,dilation_factor), np.uint8)
    for i in range(len(masks)):
        cv2_mask = np.array(masks[i])
        dilated_mask = cv2.dilate(cv2_mask, kernel, iter)
        dilated_masks.append(Image.fromarray(dilated_mask))
    return dilated_masks

def offset_masks(masks, offset_x, offset_y):
    if (offset_x == 0 and offset_y == 0):
        return masks
    offset_masks = []
    for i in range(len(masks)):
        cv2_mask = np.array(masks[i])
        offset_mask = cv2_mask.copy()
        offset_mask = np.roll(offset_mask, -offset_y, axis=0)
        offset_mask = np.roll(offset_mask, offset_x, axis=1)
        
        offset_masks.append(Image.fromarray(offset_mask))
    return offset_masks

def combine_masks(masks):
    initial_cv2_mask = np.array(masks[0])
    combined_cv2_mask = initial_cv2_mask
    for i in range(1, len(masks)):
        cv2_mask = np.array(masks[i])
        combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
    
    combined_mask = Image.fromarray(combined_cv2_mask)
    return combined_mask

def on_ui_settings():
    shared.opts.add_option("dd_save_previews", shared.OptionInfo(False, "Save mask previews", section=("ddetailer", "Detection Detailer")))
    shared.opts.add_option("outdir_ddetailer_previews", shared.OptionInfo("extensions/ddetailer/outputs/masks-previews", 'Output directory for mask previews', section=("ddetailer", "Detection Detailer")))
    shared.opts.add_option("dd_save_masks", shared.OptionInfo(False, "Save masks", section=("ddetailer", "Detection Detailer")))
    shared.opts.add_option("outdir_ddetailer_masks", shared.OptionInfo("extensions/ddetailer/outputs/masks", 'Output directory for masks', section=("ddetailer", "Detection Detailer")))

def create_segmasks(results):
    segms = results[2]
    segmasks = []
    for i in range(len(segms)):
        cv2_mask = segms[i].astype(np.uint8) * 255
        mask = Image.fromarray(cv2_mask)
        segmasks.append(mask)

    return segmasks

import mmcv
from mmdet.core import get_classes
from mmdet.apis import (inference_detector,
                        init_detector)

def get_device():
    device_id = shared.cmd_opts.device_id
    if device_id is not None:
        cuda_device = f"cuda:{device_id}"
    else:
        cuda_device = "cpu"
    return cuda_device

def inference(image, modelname, conf_thres, label):
    path = modelpath(modelname)
    if ( "mmdet" in path and "bbox" in path ):
        results = inference_mmdet_bbox(image, modelname, conf_thres, label)
    elif ( "mmdet" in path and "segm" in path):
        results = inference_mmdet_segm(image, modelname, conf_thres, label)
    return results

def inference_mmdet_segm(image, modelname, conf_thres, label):
    model_checkpoint = modelpath(modelname)
    model_config = os.path.splitext(model_checkpoint)[0] + ".py"
    model_device = get_device()
    model = init_detector(model_config, model_checkpoint, device=model_device)
    mmdet_results = inference_detector(model, np.array(image))
    bbox_results, segm_results = mmdet_results
    dataset = modeldataset(modelname)
    classes = get_classes(dataset)
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_results)
    ]
    n,m = bbox_results[0].shape
    if (n == 0):
        return [[],[],[]]
    labels = np.concatenate(labels)
    bboxes = np.vstack(bbox_results)
    segms = mmcv.concat_list(segm_results)
    filter_inds = np.where(bboxes[:,-1] > conf_thres)[0]
    results = [[],[],[]]
    for i in filter_inds:
        results[0].append(label + "-" + classes[labels[i]])
        results[1].append(bboxes[i])
        results[2].append(segms[i])

    return results

def inference_mmdet_bbox(image, modelname, conf_thres, label):
    model_checkpoint = modelpath(modelname)
    model_config = os.path.splitext(model_checkpoint)[0] + ".py"
    model_device = get_device()
    model = init_detector(model_config, model_checkpoint, device=model_device)
    results = inference_detector(model, np.array(image))
    cv2_image = np.array(image)
    cv2_image = cv2_image[:, :, ::-1].copy()
    cv2_gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY)

    segms = []
    for (x0, y0, x1, y1, conf) in results[0]:
        cv2_mask = np.zeros((cv2_gray.shape), np.uint8)
        cv2.rectangle(cv2_mask, (int(x0), int(y0)), (int(x1), int(y1)), 255, -1)
        cv2_mask_bool = cv2_mask.astype(bool)
        segms.append(cv2_mask_bool)
    
    n,m = results[0].shape
    if (n == 0):
        return [[],[],[]]
    bboxes = np.vstack(results[0])
    filter_inds = np.where(bboxes[:,-1] > conf_thres)[0]
    results = [[],[],[]]
    for i in filter_inds:
        results[0].append(label)
        results[1].append(bboxes[i])
        results[2].append(segms[i])

    return results

script_callbacks.on_ui_settings(on_ui_settings)