File size: 26,159 Bytes
f04d740 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
import os
import sys
import cv2
import math
import copy
import modules.scripts as scripts
import gradio as gr
import numpy as np
from PIL import Image
from modules import processing, shared, sd_samplers, images, devices, scripts, script_callbacks, modelloader
from modules.processing import Processed, process_images, fix_seed, StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img
from modules.shared import opts, cmd_opts, state
from modules.sd_models import model_hash
from modules.paths import models_path
from basicsr.utils.download_util import load_file_from_url
dd_models_path = os.path.join(models_path, "mmdet")
def list_models(model_path):
model_list = modelloader.load_models(model_path=model_path, ext_filter=[".pth"])
def modeltitle(path, shorthash):
abspath = os.path.abspath(path)
if abspath.startswith(model_path):
name = abspath.replace(model_path, '')
else:
name = os.path.basename(path)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
return f'{name} [{shorthash}]', shortname
models = []
for filename in model_list:
h = model_hash(filename)
title, short_model_name = modeltitle(filename, h)
models.append(title)
return models
def startup():
from launch import is_installed, run
if not is_installed("mmdet"):
python = sys.executable
run(f'"{python}" -m pip install -U openmim==0.3.7', desc="Installing openmim", errdesc="Couldn't install openmim")
run(f'"{python}" -m mim install mmcv-full==1.7.1', desc=f"Installing mmcv-full", errdesc=f"Couldn't install mmcv-full")
run(f'"{python}" -m pip install mmdet==2.28.2', desc=f"Installing mmdet", errdesc=f"Couldn't install mmdet")
if (len(list_models(dd_models_path)) == 0):
print("No detection models found, downloading...")
bbox_path = os.path.join(dd_models_path, "bbox")
segm_path = os.path.join(dd_models_path, "segm")
load_file_from_url("https://huggingface.co/dustysys/ddetailer/resolve/main/mmdet/bbox/mmdet_anime-face_yolov3.pth", bbox_path)
load_file_from_url("https://huggingface.co/dustysys/ddetailer/raw/main/mmdet/bbox/mmdet_anime-face_yolov3.py", bbox_path)
load_file_from_url("https://huggingface.co/dustysys/ddetailer/resolve/main/mmdet/segm/mmdet_dd-person_mask2former.pth", segm_path)
load_file_from_url("https://huggingface.co/dustysys/ddetailer/raw/main/mmdet/segm/mmdet_dd-person_mask2former.py", segm_path)
startup()
def gr_show(visible=True):
return {"visible": visible, "__type__": "update"}
class Script(scripts.Script):
def title(self):
return "ddetailer + sdupscale"
def show(self, is_img2img):
return not is_img2img
def ui(self, is_img2img):
import modules.ui
sample_list = [x.name for x in shared.list_samplers()]
sample_list.remove('PLMS')
sample_list.remove('UniPC')
sample_list.remove('DDIM')
sample_list.insert(0,"Original")
model_list = list_models(dd_models_path)
model_list.insert(0, "None")
enable_script_names = gr.Textbox(label="Enable Script(Extension)", elem_id="t2i_dd_prompt", value='dynamic_thresholding;dynamic_prompting',show_label=True, lines=1, placeholder="Extension python file name(ex - dynamic_thresholding;dynamic_prompting)")
scalevalue = gr.Slider(minimum=1, maximum=16, step=0.5, label='Resize', value=2)
overlap = gr.Slider(minimum=0, maximum=256, step=32, label='Tile overlap', value=32)
rewidth = gr.Slider(minimum=0, maximum=1024, step=64, label='Width', value=512)
reheight = gr.Slider(minimum=0, maximum=1024, step=64, label='Height', value=512)
upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value='R-ESRGAN 4x+ Anime6B', type="index")
denoising_strength = gr.Slider(minimum=0, maximum=1.0, step=0.01, label='Denoising strength', value=0)
upscaler_sample = gr.Dropdown(label='Upscaler Sampling', choices=sample_list, value=sample_list[0], visible=True, type="value")
detailer_sample = gr.Dropdown(label='Detailer Sampling', choices=sample_list, value=sample_list[0], visible=True, type="value")
ret = [enable_script_names, scalevalue, upscaler_sample, detailer_sample, overlap, upscaler_index, rewidth, reheight, denoising_strength]
with gr.Group():
if not is_img2img:
with gr.Row():
dd_prompt = gr.Textbox(label="dd_prompt", elem_id="t2i_dd_prompt", show_label=False, lines=3, placeholder="Ddetailer Prompt")
with gr.Row():
dd_neg_prompt = gr.Textbox(label="dd_neg_prompt", elem_id="t2i_dd_neg_prompt", show_label=False, lines=2, placeholder="Ddetailer Negative prompt")
with gr.Row():
dd_model_a = gr.Dropdown(label="Primary detection model (A)", choices=model_list,value = model_list[2], visible=True, type="value")
with gr.Row():
dd_conf_a = gr.Slider(label='Detection confidence threshold % (A)', minimum=0, maximum=100, step=1, value=30, visible=True)
dd_dilation_factor_a = gr.Slider(label='Dilation factor (A)', minimum=0, maximum=255, step=1, value=20, visible=True)
with gr.Row():
dd_offset_x_a = gr.Slider(label='X offset (A)', minimum=-200, maximum=200, step=1, value=0, visible=True)
dd_offset_y_a = gr.Slider(label='Y offset (A)', minimum=-200, maximum=200, step=1, value=0, visible=True)
with gr.Row():
dd_bitwise_op = gr.Radio(label='Bitwise operation', choices=['None', 'A&B', 'A-B'], value="A&B", visible=True)
br = gr.HTML("<br>")
with gr.Group():
with gr.Row():
dd_model_b = gr.Dropdown(label="Secondary detection model (B) (optional)", choices=model_list,value = model_list[1], visible =True, type="value")
with gr.Row():
dd_conf_b = gr.Slider(label='Detection confidence threshold % (B)', minimum=0, maximum=100, step=1, value=30, visible=True)
dd_dilation_factor_b = gr.Slider(label='Dilation factor (B)', minimum=0, maximum=255, step=1, value=10, visible=True)
with gr.Row():
dd_offset_x_b = gr.Slider(label='X offset (B)', minimum=-200, maximum=200, step=1, value=0, visible=True)
dd_offset_y_b = gr.Slider(label='Y offset (B)', minimum=-200, maximum=200, step=1, value=0, visible=True)
with gr.Group():
with gr.Row():
dd_mask_blur = gr.Slider(label='Mask blur ', minimum=0, maximum=64, step=1, value=4, visible=(not is_img2img))
dd_denoising_strength = gr.Slider(label='Denoising strength (Inpaint)', minimum=0.0, maximum=1.0, step=0.01, value=0.4, visible=(not is_img2img))
with gr.Row():
dd_inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution ', value=True, visible = (not is_img2img))
dd_inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels ', minimum=0, maximum=256, step=4, value=32, visible=(not is_img2img))
dd_model_a.change(
lambda modelname: {
dd_model_b:gr_show( modelname != "None" ),
dd_conf_a:gr_show( modelname != "None" ),
dd_dilation_factor_a:gr_show( modelname != "None"),
dd_offset_x_a:gr_show( modelname != "None" ),
dd_offset_y_a:gr_show( modelname != "None" )
},
inputs= [dd_model_a],
outputs =[dd_model_b, dd_conf_a, dd_dilation_factor_a, dd_offset_x_a, dd_offset_y_a]
)
dd_model_b.change(
lambda modelname: {
dd_bitwise_op:gr_show( modelname != "None" ),
dd_conf_b:gr_show( modelname != "None" ),
dd_dilation_factor_b:gr_show( modelname != "None"),
dd_offset_x_b:gr_show( modelname != "None" ),
dd_offset_y_b:gr_show( modelname != "None" )
},
inputs= [dd_model_b],
outputs =[dd_bitwise_op, dd_conf_b, dd_dilation_factor_b, dd_offset_x_b, dd_offset_y_b]
)
ret += [dd_model_a,
dd_conf_a, dd_dilation_factor_a,
dd_offset_x_a, dd_offset_y_a,
dd_bitwise_op,
br,
dd_model_b,
dd_conf_b, dd_dilation_factor_b,
dd_offset_x_b, dd_offset_y_b,
dd_mask_blur, dd_denoising_strength,
dd_inpaint_full_res, dd_inpaint_full_res_padding
]
if not is_img2img:
ret += [dd_prompt, dd_neg_prompt]
return ret
def run(self, p, enable_script_names, scalevalue, upscaler_sample, detailer_sample, overlap, upscaler_index, rewidth, reheight, denoising_strength,
dd_model_a,
dd_conf_a, dd_dilation_factor_a,
dd_offset_x_a, dd_offset_y_a,
dd_bitwise_op,
br,
dd_model_b,
dd_conf_b, dd_dilation_factor_b,
dd_offset_x_b, dd_offset_y_b,
dd_mask_blur, dd_denoising_strength,
dd_inpaint_full_res, dd_inpaint_full_res_padding,
dd_prompt=None, dd_neg_prompt=None):
processing.fix_seed(p)
initial_info = []
initial_prompt = []
initial_negative = []
p.batch_size = 1
ddetail_count = p.n_iter
p.n_iter = 1
p.do_not_save_grid = True
p.do_not_save_samples = True
p_txt = p
i2i_sample = ''
if detailer_sample == 'Original':
i2i_sample = 'Euler' if p_txt.sampler_name in ['PLMS', 'UniPC', 'DDIM'] else p_txt.sampler_name
else:
i2i_sample = detailer_sample
p = StableDiffusionProcessingImg2Img(
init_images = None,
resize_mode = 0,
denoising_strength = dd_denoising_strength,
mask = None,
mask_blur= dd_mask_blur,
inpainting_fill = 1,
inpaint_full_res = dd_inpaint_full_res,
inpaint_full_res_padding= dd_inpaint_full_res_padding,
inpainting_mask_invert= 0,
sd_model=p_txt.sd_model,
outpath_samples=p_txt.outpath_samples,
outpath_grids=p_txt.outpath_grids,
prompt='',
negative_prompt='',
styles=p_txt.styles,
seed=p_txt.seed,
subseed=p_txt.subseed,
subseed_strength=p_txt.subseed_strength,
seed_resize_from_h=p_txt.seed_resize_from_h,
seed_resize_from_w=p_txt.seed_resize_from_w,
sampler_name=i2i_sample,
n_iter=p_txt.n_iter,
steps=p_txt.steps,
cfg_scale=p_txt.cfg_scale,
width=p_txt.width,
height=p_txt.height,
tiling=p_txt.tiling,
)
p.do_not_save_grid = True
p.do_not_save_samples = True
p.override_settings = {}
if upscaler_sample == 'Original':
i2i_sample = 'Euler' if p_txt.sampler_name in ['PLMS', 'UniPC', 'DDIM'] else p_txt.sampler_name
else:
i2i_sample = upscaler_sample
p2 = StableDiffusionProcessingImg2Img(
sd_model=p_txt.sd_model,
outpath_samples=p_txt.outpath_samples,
outpath_grids=p_txt.outpath_grids,
prompt='',
negative_prompt='',
styles=p_txt.styles,
seed=p_txt.seed,
subseed=p_txt.subseed,
subseed_strength=p_txt.subseed_strength,
seed_resize_from_h=p_txt.seed_resize_from_h,
seed_resize_from_w=p_txt.seed_resize_from_w,
seed_enable_extras=True,
sampler_name=i2i_sample,
batch_size=1,
n_iter=1,
steps=p_txt.steps,
cfg_scale=p_txt.cfg_scale,
width=rewidth,
height=reheight,
restore_faces=p_txt.restore_faces,
tiling=p_txt.tiling,
init_images=[],
mask=None,
mask_blur=dd_mask_blur,
inpainting_fill=1,
resize_mode=0,
denoising_strength=denoising_strength,
inpaint_full_res=dd_inpaint_full_res,
inpaint_full_res_padding=dd_inpaint_full_res_padding,
inpainting_mask_invert=0,
)
p2.do_not_save_grid = True
p2.do_not_save_samples = True
p2.override_settings = {}
upscaler = shared.sd_upscalers[upscaler_index]
script_names_list = [x.strip()+'.py' for x in enable_script_names.split(';') if len(x) > 1]
processing.fix_seed(p2)
seed = p_txt.seed
p_txt.scripts.scripts = [x for x in p_txt.scripts.scripts if os.path.basename(x.filename) not in [__file__]]
t2i_scripts = p_txt.scripts.scripts.copy()
i2i_scripts = [x for x in t2i_scripts if os.path.basename(x.filename) in script_names_list]
t2i_scripts_always = p_txt.scripts.alwayson_scripts.copy()
i2i_scripts_always = [x for x in t2i_scripts_always if os.path.basename(x.filename) in script_names_list]
p.scripts = p_txt.scripts
p.script_args = p_txt.script_args
p2.scripts = p_txt.scripts
p2.script_args = p_txt.script_args
p_txt.extra_generation_params["Tile upscale value"] = scalevalue
p_txt.extra_generation_params["Tile upscale width"] = rewidth
p_txt.extra_generation_params["Tile upscale height"] = reheight
p_txt.extra_generation_params["Tile upscale overlap"] = overlap
p_txt.extra_generation_params["Tile upscale upscaler"] = upscaler.name
print(f"DDetailer {p.width}x{p.height}.")
output_images = []
result_images = []
state.job_count += ddetail_count
for n in range(ddetail_count):
devices.torch_gc()
start_seed = seed + n
print(f"Processing initial image for output generation {n + 1} (T2I).")
p_txt.seed = start_seed
p_txt.scripts.scripts = t2i_scripts
p_txt.scripts.alwayson_scripts = t2i_scripts_always
processed = processing.process_images(p_txt)
initial_info.append(processed.info)
posi, nega = processed.all_prompts[0], processed.all_negative_prompts[0]
initial_prompt.append(posi)
initial_negative.append(nega)
p.prompt = posi if not dd_prompt else dd_prompt
p.negative_prompt = nega if not dd_neg_prompt else dd_neg_prompt
init_image = processed.images[0]
output_images.append(init_image)
masks_a = []
# Primary run
if (dd_model_a != "None"):
label_a = "A"
if (dd_model_b != "None" and dd_bitwise_op != "None"):
label_a = dd_bitwise_op
results_a = inference(init_image, dd_model_a, dd_conf_a/100.0, label_a)
masks_a = create_segmasks(results_a)
masks_a = dilate_masks(masks_a, dd_dilation_factor_a, 1)
masks_a = offset_masks(masks_a,dd_offset_x_a, dd_offset_y_a)
if (dd_model_b != "None" and dd_bitwise_op != "None"):
label_b = "B"
results_b = inference(init_image, dd_model_b, dd_conf_b/100.0, label_b)
masks_b = create_segmasks(results_b)
masks_b = dilate_masks(masks_b, dd_dilation_factor_b, 1)
masks_b = offset_masks(masks_b,dd_offset_x_b, dd_offset_y_b)
if (len(masks_b) > 0):
combined_mask_b = combine_masks(masks_b)
for i in reversed(range(len(masks_a))):
if (dd_bitwise_op == "A&B"):
masks_a[i] = bitwise_and_masks(masks_a[i], combined_mask_b)
elif (dd_bitwise_op == "A-B"):
masks_a[i] = subtract_masks(masks_a[i], combined_mask_b)
if (is_allblack(masks_a[i])):
del masks_a[i]
for result in results_a:
del result[i]
else:
print("No model B detections to overlap with model A masks")
results_a = []
masks_a = []
if (len(masks_a) > 0):
results_a = update_result_masks(results_a, masks_a)
gen_count = len(masks_a)
state.job_count += gen_count
print(f"Processing {gen_count} model {label_a} detections for output generation {n + 1} (I2I).")
p.seed = start_seed
p.init_images = [init_image]
for i in range(gen_count):
p.image_mask = masks_a[i]
p.scripts.scripts = i2i_scripts
p.scripts.alwayson_scripts = i2i_scripts_always
processed = processing.process_images(p)
p.seed = processed.seed + 1
p.init_images = processed.images
if (gen_count > 0):
output_images[n] = processed.images[0]
else:
print(f"No model {label_a} detections for output generation {n} with current settings.")
state.job = f"Generation {n + 1} out of {state.job_count} DDetailer"
p2.init_images = [output_images[n]]
p2.prompt = initial_prompt[n]
p2.negative_prompt = initial_negative[n]
init_img = output_images[n]
if(upscaler.name != "None"):
img = upscaler.scaler.upscale(init_img, scalevalue, upscaler.data_path)
else:
img = init_img
devices.torch_gc()
grid = images.split_grid(img, tile_w=rewidth, tile_h=reheight, overlap=overlap)
batch_size = p2.batch_size
work = []
for y, h, row in grid.tiles:
for tiledata in row:
work.append(tiledata[2])
batch_count = math.ceil(len(work) / batch_size)
state.job_count += batch_count
print(f"Tile upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches (I2I).")
p2.seed = start_seed
work_results = []
for i in range(batch_count):
p2.batch_size = batch_size
p2.init_images = work[i*batch_size:(i+1)*batch_size]
state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
p2.scripts.scripts = i2i_scripts
p2.scripts.alwayson_scripts = i2i_scripts_always
processed = processing.process_images(p2)
p2.seed = processed.seed + 1
work_results += processed.images
image_index = 0
for y, h, row in grid.tiles:
for tiledata in row:
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (rewidth, reheight))
image_index += 1
combined_image = images.combine_grid(grid)
result_images.append(combined_image)
images.save_image(combined_image, p.outpath_samples, "", start_seed, initial_prompt[n], opts.samples_format, info=initial_info[n], p=p_txt)
return Processed(p_txt, result_images, start_seed, initial_info[0], all_prompts=initial_prompt, all_negative_prompts=initial_negative, infotexts=initial_info)
def modeldataset(model_shortname):
path = modelpath(model_shortname)
if ("mmdet" in path and "segm" in path):
dataset = 'coco'
else:
dataset = 'bbox'
return dataset
def modelpath(model_shortname):
model_list = modelloader.load_models(model_path=dd_models_path, ext_filter=[".pth"])
model_h = model_shortname.split("[")[-1].split("]")[0]
for path in model_list:
if ( model_hash(path) == model_h):
return path
def update_result_masks(results, masks):
for i in range(len(masks)):
boolmask = np.array(masks[i], dtype=bool)
results[2][i] = boolmask
return results
def is_allblack(mask):
cv2_mask = np.array(mask)
return cv2.countNonZero(cv2_mask) == 0
def bitwise_and_masks(mask1, mask2):
cv2_mask1 = np.array(mask1)
cv2_mask2 = np.array(mask2)
cv2_mask = cv2.bitwise_and(cv2_mask1, cv2_mask2)
mask = Image.fromarray(cv2_mask)
return mask
def subtract_masks(mask1, mask2):
cv2_mask1 = np.array(mask1)
cv2_mask2 = np.array(mask2)
cv2_mask = cv2.subtract(cv2_mask1, cv2_mask2)
mask = Image.fromarray(cv2_mask)
return mask
def dilate_masks(masks, dilation_factor, iter=1):
if dilation_factor == 0:
return masks
dilated_masks = []
kernel = np.ones((dilation_factor,dilation_factor), np.uint8)
for i in range(len(masks)):
cv2_mask = np.array(masks[i])
dilated_mask = cv2.dilate(cv2_mask, kernel, iter)
dilated_masks.append(Image.fromarray(dilated_mask))
return dilated_masks
def offset_masks(masks, offset_x, offset_y):
if (offset_x == 0 and offset_y == 0):
return masks
offset_masks = []
for i in range(len(masks)):
cv2_mask = np.array(masks[i])
offset_mask = cv2_mask.copy()
offset_mask = np.roll(offset_mask, -offset_y, axis=0)
offset_mask = np.roll(offset_mask, offset_x, axis=1)
offset_masks.append(Image.fromarray(offset_mask))
return offset_masks
def combine_masks(masks):
initial_cv2_mask = np.array(masks[0])
combined_cv2_mask = initial_cv2_mask
for i in range(1, len(masks)):
cv2_mask = np.array(masks[i])
combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
combined_mask = Image.fromarray(combined_cv2_mask)
return combined_mask
def create_segmasks(results):
segms = results[2]
segmasks = []
for i in range(len(segms)):
cv2_mask = segms[i].astype(np.uint8) * 255
mask = Image.fromarray(cv2_mask)
segmasks.append(mask)
return segmasks
import mmcv
from mmdet.core import get_classes
from mmdet.apis import (inference_detector,
init_detector)
def get_device():
device_id = shared.cmd_opts.device_id
if device_id is not None:
cuda_device = f"cuda:{device_id}"
else:
cuda_device = "cpu"
return cuda_device
def inference(image, modelname, conf_thres, label):
path = modelpath(modelname)
if ( "mmdet" in path and "bbox" in path ):
results = inference_mmdet_bbox(image, modelname, conf_thres, label)
elif ( "mmdet" in path and "segm" in path):
results = inference_mmdet_segm(image, modelname, conf_thres, label)
return results
def inference_mmdet_segm(image, modelname, conf_thres, label):
model_checkpoint = modelpath(modelname)
model_config = os.path.splitext(model_checkpoint)[0] + ".py"
model_device = get_device()
model = init_detector(model_config, model_checkpoint, device=model_device)
mmdet_results = inference_detector(model, np.array(image))
bbox_results, segm_results = mmdet_results
dataset = modeldataset(modelname)
classes = get_classes(dataset)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_results)
]
n,m = bbox_results[0].shape
if (n == 0):
return [[],[],[]]
labels = np.concatenate(labels)
bboxes = np.vstack(bbox_results)
segms = mmcv.concat_list(segm_results)
filter_inds = np.where(bboxes[:,-1] > conf_thres)[0]
results = [[],[],[]]
for i in filter_inds:
results[0].append(label + "-" + classes[labels[i]])
results[1].append(bboxes[i])
results[2].append(segms[i])
return results
def inference_mmdet_bbox(image, modelname, conf_thres, label):
model_checkpoint = modelpath(modelname)
model_config = os.path.splitext(model_checkpoint)[0] + ".py"
model_device = get_device()
model = init_detector(model_config, model_checkpoint, device=model_device)
results = inference_detector(model, np.array(image))
cv2_image = np.array(image)
cv2_image = cv2_image[:, :, ::-1].copy()
cv2_gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY)
segms = []
for (x0, y0, x1, y1, conf) in results[0]:
cv2_mask = np.zeros((cv2_gray.shape), np.uint8)
cv2.rectangle(cv2_mask, (int(x0), int(y0)), (int(x1), int(y1)), 255, -1)
cv2_mask_bool = cv2_mask.astype(bool)
segms.append(cv2_mask_bool)
n,m = results[0].shape
if (n == 0):
return [[],[],[]]
bboxes = np.vstack(results[0])
filter_inds = np.where(bboxes[:,-1] > conf_thres)[0]
results = [[],[],[]]
for i in filter_inds:
results[0].append(label)
results[1].append(bboxes[i])
results[2].append(segms[i])
return results |