custom / ddsd.py
nahuiyang's picture
Upload 61 files
f04d740
raw
history blame
26.2 kB
import os
import sys
import cv2
import math
import copy
import modules.scripts as scripts
import gradio as gr
import numpy as np
from PIL import Image
from modules import processing, shared, sd_samplers, images, devices, scripts, script_callbacks, modelloader
from modules.processing import Processed, process_images, fix_seed, StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img
from modules.shared import opts, cmd_opts, state
from modules.sd_models import model_hash
from modules.paths import models_path
from basicsr.utils.download_util import load_file_from_url
dd_models_path = os.path.join(models_path, "mmdet")
def list_models(model_path):
model_list = modelloader.load_models(model_path=model_path, ext_filter=[".pth"])
def modeltitle(path, shorthash):
abspath = os.path.abspath(path)
if abspath.startswith(model_path):
name = abspath.replace(model_path, '')
else:
name = os.path.basename(path)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
return f'{name} [{shorthash}]', shortname
models = []
for filename in model_list:
h = model_hash(filename)
title, short_model_name = modeltitle(filename, h)
models.append(title)
return models
def startup():
from launch import is_installed, run
if not is_installed("mmdet"):
python = sys.executable
run(f'"{python}" -m pip install -U openmim==0.3.7', desc="Installing openmim", errdesc="Couldn't install openmim")
run(f'"{python}" -m mim install mmcv-full==1.7.1', desc=f"Installing mmcv-full", errdesc=f"Couldn't install mmcv-full")
run(f'"{python}" -m pip install mmdet==2.28.2', desc=f"Installing mmdet", errdesc=f"Couldn't install mmdet")
if (len(list_models(dd_models_path)) == 0):
print("No detection models found, downloading...")
bbox_path = os.path.join(dd_models_path, "bbox")
segm_path = os.path.join(dd_models_path, "segm")
load_file_from_url("https://huggingface.co/dustysys/ddetailer/resolve/main/mmdet/bbox/mmdet_anime-face_yolov3.pth", bbox_path)
load_file_from_url("https://huggingface.co/dustysys/ddetailer/raw/main/mmdet/bbox/mmdet_anime-face_yolov3.py", bbox_path)
load_file_from_url("https://huggingface.co/dustysys/ddetailer/resolve/main/mmdet/segm/mmdet_dd-person_mask2former.pth", segm_path)
load_file_from_url("https://huggingface.co/dustysys/ddetailer/raw/main/mmdet/segm/mmdet_dd-person_mask2former.py", segm_path)
startup()
def gr_show(visible=True):
return {"visible": visible, "__type__": "update"}
class Script(scripts.Script):
def title(self):
return "ddetailer + sdupscale"
def show(self, is_img2img):
return not is_img2img
def ui(self, is_img2img):
import modules.ui
sample_list = [x.name for x in shared.list_samplers()]
sample_list.remove('PLMS')
sample_list.remove('UniPC')
sample_list.remove('DDIM')
sample_list.insert(0,"Original")
model_list = list_models(dd_models_path)
model_list.insert(0, "None")
enable_script_names = gr.Textbox(label="Enable Script(Extension)", elem_id="t2i_dd_prompt", value='dynamic_thresholding;dynamic_prompting',show_label=True, lines=1, placeholder="Extension python file name(ex - dynamic_thresholding;dynamic_prompting)")
scalevalue = gr.Slider(minimum=1, maximum=16, step=0.5, label='Resize', value=2)
overlap = gr.Slider(minimum=0, maximum=256, step=32, label='Tile overlap', value=32)
rewidth = gr.Slider(minimum=0, maximum=1024, step=64, label='Width', value=512)
reheight = gr.Slider(minimum=0, maximum=1024, step=64, label='Height', value=512)
upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value='R-ESRGAN 4x+ Anime6B', type="index")
denoising_strength = gr.Slider(minimum=0, maximum=1.0, step=0.01, label='Denoising strength', value=0)
upscaler_sample = gr.Dropdown(label='Upscaler Sampling', choices=sample_list, value=sample_list[0], visible=True, type="value")
detailer_sample = gr.Dropdown(label='Detailer Sampling', choices=sample_list, value=sample_list[0], visible=True, type="value")
ret = [enable_script_names, scalevalue, upscaler_sample, detailer_sample, overlap, upscaler_index, rewidth, reheight, denoising_strength]
with gr.Group():
if not is_img2img:
with gr.Row():
dd_prompt = gr.Textbox(label="dd_prompt", elem_id="t2i_dd_prompt", show_label=False, lines=3, placeholder="Ddetailer Prompt")
with gr.Row():
dd_neg_prompt = gr.Textbox(label="dd_neg_prompt", elem_id="t2i_dd_neg_prompt", show_label=False, lines=2, placeholder="Ddetailer Negative prompt")
with gr.Row():
dd_model_a = gr.Dropdown(label="Primary detection model (A)", choices=model_list,value = model_list[2], visible=True, type="value")
with gr.Row():
dd_conf_a = gr.Slider(label='Detection confidence threshold % (A)', minimum=0, maximum=100, step=1, value=30, visible=True)
dd_dilation_factor_a = gr.Slider(label='Dilation factor (A)', minimum=0, maximum=255, step=1, value=20, visible=True)
with gr.Row():
dd_offset_x_a = gr.Slider(label='X offset (A)', minimum=-200, maximum=200, step=1, value=0, visible=True)
dd_offset_y_a = gr.Slider(label='Y offset (A)', minimum=-200, maximum=200, step=1, value=0, visible=True)
with gr.Row():
dd_bitwise_op = gr.Radio(label='Bitwise operation', choices=['None', 'A&B', 'A-B'], value="A&B", visible=True)
br = gr.HTML("<br>")
with gr.Group():
with gr.Row():
dd_model_b = gr.Dropdown(label="Secondary detection model (B) (optional)", choices=model_list,value = model_list[1], visible =True, type="value")
with gr.Row():
dd_conf_b = gr.Slider(label='Detection confidence threshold % (B)', minimum=0, maximum=100, step=1, value=30, visible=True)
dd_dilation_factor_b = gr.Slider(label='Dilation factor (B)', minimum=0, maximum=255, step=1, value=10, visible=True)
with gr.Row():
dd_offset_x_b = gr.Slider(label='X offset (B)', minimum=-200, maximum=200, step=1, value=0, visible=True)
dd_offset_y_b = gr.Slider(label='Y offset (B)', minimum=-200, maximum=200, step=1, value=0, visible=True)
with gr.Group():
with gr.Row():
dd_mask_blur = gr.Slider(label='Mask blur ', minimum=0, maximum=64, step=1, value=4, visible=(not is_img2img))
dd_denoising_strength = gr.Slider(label='Denoising strength (Inpaint)', minimum=0.0, maximum=1.0, step=0.01, value=0.4, visible=(not is_img2img))
with gr.Row():
dd_inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution ', value=True, visible = (not is_img2img))
dd_inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels ', minimum=0, maximum=256, step=4, value=32, visible=(not is_img2img))
dd_model_a.change(
lambda modelname: {
dd_model_b:gr_show( modelname != "None" ),
dd_conf_a:gr_show( modelname != "None" ),
dd_dilation_factor_a:gr_show( modelname != "None"),
dd_offset_x_a:gr_show( modelname != "None" ),
dd_offset_y_a:gr_show( modelname != "None" )
},
inputs= [dd_model_a],
outputs =[dd_model_b, dd_conf_a, dd_dilation_factor_a, dd_offset_x_a, dd_offset_y_a]
)
dd_model_b.change(
lambda modelname: {
dd_bitwise_op:gr_show( modelname != "None" ),
dd_conf_b:gr_show( modelname != "None" ),
dd_dilation_factor_b:gr_show( modelname != "None"),
dd_offset_x_b:gr_show( modelname != "None" ),
dd_offset_y_b:gr_show( modelname != "None" )
},
inputs= [dd_model_b],
outputs =[dd_bitwise_op, dd_conf_b, dd_dilation_factor_b, dd_offset_x_b, dd_offset_y_b]
)
ret += [dd_model_a,
dd_conf_a, dd_dilation_factor_a,
dd_offset_x_a, dd_offset_y_a,
dd_bitwise_op,
br,
dd_model_b,
dd_conf_b, dd_dilation_factor_b,
dd_offset_x_b, dd_offset_y_b,
dd_mask_blur, dd_denoising_strength,
dd_inpaint_full_res, dd_inpaint_full_res_padding
]
if not is_img2img:
ret += [dd_prompt, dd_neg_prompt]
return ret
def run(self, p, enable_script_names, scalevalue, upscaler_sample, detailer_sample, overlap, upscaler_index, rewidth, reheight, denoising_strength,
dd_model_a,
dd_conf_a, dd_dilation_factor_a,
dd_offset_x_a, dd_offset_y_a,
dd_bitwise_op,
br,
dd_model_b,
dd_conf_b, dd_dilation_factor_b,
dd_offset_x_b, dd_offset_y_b,
dd_mask_blur, dd_denoising_strength,
dd_inpaint_full_res, dd_inpaint_full_res_padding,
dd_prompt=None, dd_neg_prompt=None):
processing.fix_seed(p)
initial_info = []
initial_prompt = []
initial_negative = []
p.batch_size = 1
ddetail_count = p.n_iter
p.n_iter = 1
p.do_not_save_grid = True
p.do_not_save_samples = True
p_txt = p
i2i_sample = ''
if detailer_sample == 'Original':
i2i_sample = 'Euler' if p_txt.sampler_name in ['PLMS', 'UniPC', 'DDIM'] else p_txt.sampler_name
else:
i2i_sample = detailer_sample
p = StableDiffusionProcessingImg2Img(
init_images = None,
resize_mode = 0,
denoising_strength = dd_denoising_strength,
mask = None,
mask_blur= dd_mask_blur,
inpainting_fill = 1,
inpaint_full_res = dd_inpaint_full_res,
inpaint_full_res_padding= dd_inpaint_full_res_padding,
inpainting_mask_invert= 0,
sd_model=p_txt.sd_model,
outpath_samples=p_txt.outpath_samples,
outpath_grids=p_txt.outpath_grids,
prompt='',
negative_prompt='',
styles=p_txt.styles,
seed=p_txt.seed,
subseed=p_txt.subseed,
subseed_strength=p_txt.subseed_strength,
seed_resize_from_h=p_txt.seed_resize_from_h,
seed_resize_from_w=p_txt.seed_resize_from_w,
sampler_name=i2i_sample,
n_iter=p_txt.n_iter,
steps=p_txt.steps,
cfg_scale=p_txt.cfg_scale,
width=p_txt.width,
height=p_txt.height,
tiling=p_txt.tiling,
)
p.do_not_save_grid = True
p.do_not_save_samples = True
p.override_settings = {}
if upscaler_sample == 'Original':
i2i_sample = 'Euler' if p_txt.sampler_name in ['PLMS', 'UniPC', 'DDIM'] else p_txt.sampler_name
else:
i2i_sample = upscaler_sample
p2 = StableDiffusionProcessingImg2Img(
sd_model=p_txt.sd_model,
outpath_samples=p_txt.outpath_samples,
outpath_grids=p_txt.outpath_grids,
prompt='',
negative_prompt='',
styles=p_txt.styles,
seed=p_txt.seed,
subseed=p_txt.subseed,
subseed_strength=p_txt.subseed_strength,
seed_resize_from_h=p_txt.seed_resize_from_h,
seed_resize_from_w=p_txt.seed_resize_from_w,
seed_enable_extras=True,
sampler_name=i2i_sample,
batch_size=1,
n_iter=1,
steps=p_txt.steps,
cfg_scale=p_txt.cfg_scale,
width=rewidth,
height=reheight,
restore_faces=p_txt.restore_faces,
tiling=p_txt.tiling,
init_images=[],
mask=None,
mask_blur=dd_mask_blur,
inpainting_fill=1,
resize_mode=0,
denoising_strength=denoising_strength,
inpaint_full_res=dd_inpaint_full_res,
inpaint_full_res_padding=dd_inpaint_full_res_padding,
inpainting_mask_invert=0,
)
p2.do_not_save_grid = True
p2.do_not_save_samples = True
p2.override_settings = {}
upscaler = shared.sd_upscalers[upscaler_index]
script_names_list = [x.strip()+'.py' for x in enable_script_names.split(';') if len(x) > 1]
processing.fix_seed(p2)
seed = p_txt.seed
p_txt.scripts.scripts = [x for x in p_txt.scripts.scripts if os.path.basename(x.filename) not in [__file__]]
t2i_scripts = p_txt.scripts.scripts.copy()
i2i_scripts = [x for x in t2i_scripts if os.path.basename(x.filename) in script_names_list]
t2i_scripts_always = p_txt.scripts.alwayson_scripts.copy()
i2i_scripts_always = [x for x in t2i_scripts_always if os.path.basename(x.filename) in script_names_list]
p.scripts = p_txt.scripts
p.script_args = p_txt.script_args
p2.scripts = p_txt.scripts
p2.script_args = p_txt.script_args
p_txt.extra_generation_params["Tile upscale value"] = scalevalue
p_txt.extra_generation_params["Tile upscale width"] = rewidth
p_txt.extra_generation_params["Tile upscale height"] = reheight
p_txt.extra_generation_params["Tile upscale overlap"] = overlap
p_txt.extra_generation_params["Tile upscale upscaler"] = upscaler.name
print(f"DDetailer {p.width}x{p.height}.")
output_images = []
result_images = []
state.job_count += ddetail_count
for n in range(ddetail_count):
devices.torch_gc()
start_seed = seed + n
print(f"Processing initial image for output generation {n + 1} (T2I).")
p_txt.seed = start_seed
p_txt.scripts.scripts = t2i_scripts
p_txt.scripts.alwayson_scripts = t2i_scripts_always
processed = processing.process_images(p_txt)
initial_info.append(processed.info)
posi, nega = processed.all_prompts[0], processed.all_negative_prompts[0]
initial_prompt.append(posi)
initial_negative.append(nega)
p.prompt = posi if not dd_prompt else dd_prompt
p.negative_prompt = nega if not dd_neg_prompt else dd_neg_prompt
init_image = processed.images[0]
output_images.append(init_image)
masks_a = []
# Primary run
if (dd_model_a != "None"):
label_a = "A"
if (dd_model_b != "None" and dd_bitwise_op != "None"):
label_a = dd_bitwise_op
results_a = inference(init_image, dd_model_a, dd_conf_a/100.0, label_a)
masks_a = create_segmasks(results_a)
masks_a = dilate_masks(masks_a, dd_dilation_factor_a, 1)
masks_a = offset_masks(masks_a,dd_offset_x_a, dd_offset_y_a)
if (dd_model_b != "None" and dd_bitwise_op != "None"):
label_b = "B"
results_b = inference(init_image, dd_model_b, dd_conf_b/100.0, label_b)
masks_b = create_segmasks(results_b)
masks_b = dilate_masks(masks_b, dd_dilation_factor_b, 1)
masks_b = offset_masks(masks_b,dd_offset_x_b, dd_offset_y_b)
if (len(masks_b) > 0):
combined_mask_b = combine_masks(masks_b)
for i in reversed(range(len(masks_a))):
if (dd_bitwise_op == "A&B"):
masks_a[i] = bitwise_and_masks(masks_a[i], combined_mask_b)
elif (dd_bitwise_op == "A-B"):
masks_a[i] = subtract_masks(masks_a[i], combined_mask_b)
if (is_allblack(masks_a[i])):
del masks_a[i]
for result in results_a:
del result[i]
else:
print("No model B detections to overlap with model A masks")
results_a = []
masks_a = []
if (len(masks_a) > 0):
results_a = update_result_masks(results_a, masks_a)
gen_count = len(masks_a)
state.job_count += gen_count
print(f"Processing {gen_count} model {label_a} detections for output generation {n + 1} (I2I).")
p.seed = start_seed
p.init_images = [init_image]
for i in range(gen_count):
p.image_mask = masks_a[i]
p.scripts.scripts = i2i_scripts
p.scripts.alwayson_scripts = i2i_scripts_always
processed = processing.process_images(p)
p.seed = processed.seed + 1
p.init_images = processed.images
if (gen_count > 0):
output_images[n] = processed.images[0]
else:
print(f"No model {label_a} detections for output generation {n} with current settings.")
state.job = f"Generation {n + 1} out of {state.job_count} DDetailer"
p2.init_images = [output_images[n]]
p2.prompt = initial_prompt[n]
p2.negative_prompt = initial_negative[n]
init_img = output_images[n]
if(upscaler.name != "None"):
img = upscaler.scaler.upscale(init_img, scalevalue, upscaler.data_path)
else:
img = init_img
devices.torch_gc()
grid = images.split_grid(img, tile_w=rewidth, tile_h=reheight, overlap=overlap)
batch_size = p2.batch_size
work = []
for y, h, row in grid.tiles:
for tiledata in row:
work.append(tiledata[2])
batch_count = math.ceil(len(work) / batch_size)
state.job_count += batch_count
print(f"Tile upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches (I2I).")
p2.seed = start_seed
work_results = []
for i in range(batch_count):
p2.batch_size = batch_size
p2.init_images = work[i*batch_size:(i+1)*batch_size]
state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
p2.scripts.scripts = i2i_scripts
p2.scripts.alwayson_scripts = i2i_scripts_always
processed = processing.process_images(p2)
p2.seed = processed.seed + 1
work_results += processed.images
image_index = 0
for y, h, row in grid.tiles:
for tiledata in row:
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (rewidth, reheight))
image_index += 1
combined_image = images.combine_grid(grid)
result_images.append(combined_image)
images.save_image(combined_image, p.outpath_samples, "", start_seed, initial_prompt[n], opts.samples_format, info=initial_info[n], p=p_txt)
return Processed(p_txt, result_images, start_seed, initial_info[0], all_prompts=initial_prompt, all_negative_prompts=initial_negative, infotexts=initial_info)
def modeldataset(model_shortname):
path = modelpath(model_shortname)
if ("mmdet" in path and "segm" in path):
dataset = 'coco'
else:
dataset = 'bbox'
return dataset
def modelpath(model_shortname):
model_list = modelloader.load_models(model_path=dd_models_path, ext_filter=[".pth"])
model_h = model_shortname.split("[")[-1].split("]")[0]
for path in model_list:
if ( model_hash(path) == model_h):
return path
def update_result_masks(results, masks):
for i in range(len(masks)):
boolmask = np.array(masks[i], dtype=bool)
results[2][i] = boolmask
return results
def is_allblack(mask):
cv2_mask = np.array(mask)
return cv2.countNonZero(cv2_mask) == 0
def bitwise_and_masks(mask1, mask2):
cv2_mask1 = np.array(mask1)
cv2_mask2 = np.array(mask2)
cv2_mask = cv2.bitwise_and(cv2_mask1, cv2_mask2)
mask = Image.fromarray(cv2_mask)
return mask
def subtract_masks(mask1, mask2):
cv2_mask1 = np.array(mask1)
cv2_mask2 = np.array(mask2)
cv2_mask = cv2.subtract(cv2_mask1, cv2_mask2)
mask = Image.fromarray(cv2_mask)
return mask
def dilate_masks(masks, dilation_factor, iter=1):
if dilation_factor == 0:
return masks
dilated_masks = []
kernel = np.ones((dilation_factor,dilation_factor), np.uint8)
for i in range(len(masks)):
cv2_mask = np.array(masks[i])
dilated_mask = cv2.dilate(cv2_mask, kernel, iter)
dilated_masks.append(Image.fromarray(dilated_mask))
return dilated_masks
def offset_masks(masks, offset_x, offset_y):
if (offset_x == 0 and offset_y == 0):
return masks
offset_masks = []
for i in range(len(masks)):
cv2_mask = np.array(masks[i])
offset_mask = cv2_mask.copy()
offset_mask = np.roll(offset_mask, -offset_y, axis=0)
offset_mask = np.roll(offset_mask, offset_x, axis=1)
offset_masks.append(Image.fromarray(offset_mask))
return offset_masks
def combine_masks(masks):
initial_cv2_mask = np.array(masks[0])
combined_cv2_mask = initial_cv2_mask
for i in range(1, len(masks)):
cv2_mask = np.array(masks[i])
combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
combined_mask = Image.fromarray(combined_cv2_mask)
return combined_mask
def create_segmasks(results):
segms = results[2]
segmasks = []
for i in range(len(segms)):
cv2_mask = segms[i].astype(np.uint8) * 255
mask = Image.fromarray(cv2_mask)
segmasks.append(mask)
return segmasks
import mmcv
from mmdet.core import get_classes
from mmdet.apis import (inference_detector,
init_detector)
def get_device():
device_id = shared.cmd_opts.device_id
if device_id is not None:
cuda_device = f"cuda:{device_id}"
else:
cuda_device = "cpu"
return cuda_device
def inference(image, modelname, conf_thres, label):
path = modelpath(modelname)
if ( "mmdet" in path and "bbox" in path ):
results = inference_mmdet_bbox(image, modelname, conf_thres, label)
elif ( "mmdet" in path and "segm" in path):
results = inference_mmdet_segm(image, modelname, conf_thres, label)
return results
def inference_mmdet_segm(image, modelname, conf_thres, label):
model_checkpoint = modelpath(modelname)
model_config = os.path.splitext(model_checkpoint)[0] + ".py"
model_device = get_device()
model = init_detector(model_config, model_checkpoint, device=model_device)
mmdet_results = inference_detector(model, np.array(image))
bbox_results, segm_results = mmdet_results
dataset = modeldataset(modelname)
classes = get_classes(dataset)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_results)
]
n,m = bbox_results[0].shape
if (n == 0):
return [[],[],[]]
labels = np.concatenate(labels)
bboxes = np.vstack(bbox_results)
segms = mmcv.concat_list(segm_results)
filter_inds = np.where(bboxes[:,-1] > conf_thres)[0]
results = [[],[],[]]
for i in filter_inds:
results[0].append(label + "-" + classes[labels[i]])
results[1].append(bboxes[i])
results[2].append(segms[i])
return results
def inference_mmdet_bbox(image, modelname, conf_thres, label):
model_checkpoint = modelpath(modelname)
model_config = os.path.splitext(model_checkpoint)[0] + ".py"
model_device = get_device()
model = init_detector(model_config, model_checkpoint, device=model_device)
results = inference_detector(model, np.array(image))
cv2_image = np.array(image)
cv2_image = cv2_image[:, :, ::-1].copy()
cv2_gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY)
segms = []
for (x0, y0, x1, y1, conf) in results[0]:
cv2_mask = np.zeros((cv2_gray.shape), np.uint8)
cv2.rectangle(cv2_mask, (int(x0), int(y0)), (int(x1), int(y1)), 255, -1)
cv2_mask_bool = cv2_mask.astype(bool)
segms.append(cv2_mask_bool)
n,m = results[0].shape
if (n == 0):
return [[],[],[]]
bboxes = np.vstack(results[0])
filter_inds = np.where(bboxes[:,-1] > conf_thres)[0]
results = [[],[],[]]
for i in filter_inds:
results[0].append(label)
results[1].append(bboxes[i])
results[2].append(segms[i])
return results