import os
import sys
import cv2
from PIL import Image
import numpy as np
import gradio as gr
from modules import processing, images
from modules import scripts, script_callbacks, shared, devices, modelloader
from modules.processing import Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
from modules.shared import opts, cmd_opts, state
from modules.sd_models import model_hash
from modules.paths import models_path
from basicsr.utils.download_util import load_file_from_url
dd_models_path = os.path.join(models_path, "mmdet")
def list_models(model_path):
model_list = modelloader.load_models(model_path=model_path, ext_filter=[".pth"])
def modeltitle(path, shorthash):
abspath = os.path.abspath(path)
if abspath.startswith(model_path):
name = abspath.replace(model_path, '')
else:
name = os.path.basename(path)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
return f'{name} [{shorthash}]', shortname
models = []
for filename in model_list:
h = model_hash(filename)
title, short_model_name = modeltitle(filename, h)
models.append(title)
return models
def startup():
from launch import is_installed, run
if not is_installed("mmdet"):
python = sys.executable
run(f'"{python}" -m pip install -U openmim==0.3.7', desc="Installing openmim", errdesc="Couldn't install openmim")
run(f'"{python}" -m mim install mmcv-full==1.7.1', desc=f"Installing mmcv-full", errdesc=f"Couldn't install mmcv-full")
run(f'"{python}" -m pip install mmdet==2.28.2', desc=f"Installing mmdet", errdesc=f"Couldn't install mmdet")
if (len(list_models(dd_models_path)) == 0):
print("No detection models found, downloading...")
bbox_path = os.path.join(dd_models_path, "bbox")
segm_path = os.path.join(dd_models_path, "segm")
load_file_from_url("https://huggingface.co/dustysys/ddetailer/resolve/main/mmdet/bbox/mmdet_anime-face_yolov3.pth", bbox_path)
load_file_from_url("https://huggingface.co/dustysys/ddetailer/raw/main/mmdet/bbox/mmdet_anime-face_yolov3.py", bbox_path)
load_file_from_url("https://huggingface.co/dustysys/ddetailer/resolve/main/mmdet/segm/mmdet_dd-person_mask2former.pth", segm_path)
load_file_from_url("https://huggingface.co/dustysys/ddetailer/raw/main/mmdet/segm/mmdet_dd-person_mask2former.py", segm_path)
startup()
def gr_show(visible=True):
return {"visible": visible, "__type__": "update"}
class DetectionDetailerScript(scripts.Script):
def title(self):
return "Detection Detailer"
def show(self, is_img2img):
return True
def ui(self, is_img2img):
import modules.ui
model_list = list_models(dd_models_path)
model_list.insert(0, "None")
if is_img2img:
info = gr.HTML("
Recommended settings: Use from inpaint tab, inpaint at full res ON, denoise <0.5
")
else:
info = gr.HTML("")
with gr.Group():
with gr.Row():
dd_model_a = gr.Dropdown(label="Primary detection model (A)", choices=model_list,value = "None", visible=True, type="value")
with gr.Row():
dd_conf_a = gr.Slider(label='Detection confidence threshold % (A)', minimum=0, maximum=100, step=1, value=30, visible=False)
dd_dilation_factor_a = gr.Slider(label='Dilation factor (A)', minimum=0, maximum=255, step=1, value=4, visible=False)
with gr.Row():
dd_offset_x_a = gr.Slider(label='X offset (A)', minimum=-200, maximum=200, step=1, value=0, visible=False)
dd_offset_y_a = gr.Slider(label='Y offset (A)', minimum=-200, maximum=200, step=1, value=0, visible=False)
with gr.Row():
dd_preprocess_b = gr.Checkbox(label='Inpaint model B detections before model A runs', value=False, visible=False)
dd_bitwise_op = gr.Radio(label='Bitwise operation', choices=['None', 'A&B', 'A-B'], value="None", visible=False)
br = gr.HTML("
")
with gr.Group():
with gr.Row():
dd_model_b = gr.Dropdown(label="Secondary detection model (B) (optional)", choices=model_list,value = "None", visible =False, type="value")
with gr.Row():
dd_conf_b = gr.Slider(label='Detection confidence threshold % (B)', minimum=0, maximum=100, step=1, value=30, visible=False)
dd_dilation_factor_b = gr.Slider(label='Dilation factor (B)', minimum=0, maximum=255, step=1, value=4, visible=False)
with gr.Row():
dd_offset_x_b = gr.Slider(label='X offset (B)', minimum=-200, maximum=200, step=1, value=0, visible=False)
dd_offset_y_b = gr.Slider(label='Y offset (B)', minimum=-200, maximum=200, step=1, value=0, visible=False)
with gr.Group():
with gr.Row():
dd_mask_blur = gr.Slider(label='Mask blur ', minimum=0, maximum=64, step=1, value=4, visible=(not is_img2img))
dd_denoising_strength = gr.Slider(label='Denoising strength (Inpaint)', minimum=0.0, maximum=1.0, step=0.01, value=0.4, visible=(not is_img2img))
with gr.Row():
dd_inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution ', value=True, visible = (not is_img2img))
dd_inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels ', minimum=0, maximum=256, step=4, value=32, visible=(not is_img2img))
with gr.Row():
dd_mimic_cfg = gr.Slider(label='Mimic CFG Scale', minimum=0, maximum=30, step=0.5, value=7, visible=True)
dd_model_a.change(
lambda modelname: {
dd_model_b:gr_show( modelname != "None" ),
dd_conf_a:gr_show( modelname != "None" ),
dd_dilation_factor_a:gr_show( modelname != "None"),
dd_offset_x_a:gr_show( modelname != "None" ),
dd_offset_y_a:gr_show( modelname != "None" )
},
inputs= [dd_model_a],
outputs =[dd_model_b, dd_conf_a, dd_dilation_factor_a, dd_offset_x_a, dd_offset_y_a]
)
dd_model_b.change(
lambda modelname: {
dd_preprocess_b:gr_show( modelname != "None" ),
dd_bitwise_op:gr_show( modelname != "None" ),
dd_conf_b:gr_show( modelname != "None" ),
dd_dilation_factor_b:gr_show( modelname != "None"),
dd_offset_x_b:gr_show( modelname != "None" ),
dd_offset_y_b:gr_show( modelname != "None" )
},
inputs= [dd_model_b],
outputs =[dd_preprocess_b, dd_bitwise_op, dd_conf_b, dd_dilation_factor_b, dd_offset_x_b, dd_offset_y_b]
)
return [info,
dd_model_a,
dd_conf_a, dd_dilation_factor_a,
dd_offset_x_a, dd_offset_y_a,
dd_preprocess_b, dd_bitwise_op,
br,
dd_model_b,
dd_conf_b, dd_dilation_factor_b,
dd_offset_x_b, dd_offset_y_b,
dd_mask_blur, dd_denoising_strength,
dd_inpaint_full_res, dd_inpaint_full_res_padding,
dd_mimic_cfg
]
def run(self, p, info,
dd_model_a,
dd_conf_a, dd_dilation_factor_a,
dd_offset_x_a, dd_offset_y_a,
dd_preprocess_b, dd_bitwise_op,
br,
dd_model_b,
dd_conf_b, dd_dilation_factor_b,
dd_offset_x_b, dd_offset_y_b,
dd_mask_blur, dd_denoising_strength,
dd_inpaint_full_res, dd_inpaint_full_res_padding,
dd_mimic_cfg):
processing.fix_seed(p)
initial_info = None
seed = p.seed
p.batch_size = 1
ddetail_count = p.n_iter
p.n_iter = 1
p.do_not_save_grid = True
p.do_not_save_samples = True
is_txt2img = isinstance(p, StableDiffusionProcessingTxt2Img)
if (not is_txt2img):
orig_image = p.init_images[0]
else:
p_txt = p
print(f"mimic_scale = {dd_mimic_cfg}")
p = StableDiffusionProcessingImg2Img(
init_images = None,
resize_mode = 0,
denoising_strength = dd_denoising_strength,
mask = None,
mask_blur= dd_mask_blur,
inpainting_fill = 1,
inpaint_full_res = dd_inpaint_full_res,
inpaint_full_res_padding= dd_inpaint_full_res_padding,
inpainting_mask_invert= 0,
sd_model=p_txt.sd_model,
outpath_samples=p_txt.outpath_samples,
outpath_grids=p_txt.outpath_grids,
prompt=p_txt.prompt,
negative_prompt=p_txt.negative_prompt,
styles=p_txt.styles,
seed=p_txt.seed,
subseed=p_txt.subseed,
subseed_strength=p_txt.subseed_strength,
seed_resize_from_h=p_txt.seed_resize_from_h,
seed_resize_from_w=p_txt.seed_resize_from_w,
sampler_name=p_txt.sampler_name,
n_iter=p_txt.n_iter,
steps=p_txt.steps,
cfg_scale=dd_mimic_cfg,
width=p_txt.width,
height=p_txt.height,
tiling=p_txt.tiling,
)
p.do_not_save_grid = True
p.do_not_save_samples = True
output_images = []
state.job_count = ddetail_count
for n in range(ddetail_count):
devices.torch_gc()
start_seed = seed + n
if ( is_txt2img ):
print(f"Processing initial image for output generation {n + 1}.")
p_txt.seed = start_seed
processed = processing.process_images(p_txt)
init_image = processed.images[0]
else:
init_image = orig_image
output_images.append(init_image)
masks_a = []
masks_b_pre = []
# Optional secondary pre-processing run
if (dd_model_b != "None" and dd_preprocess_b):
label_b_pre = "B"
results_b_pre = inference(init_image, dd_model_b, dd_conf_b/100.0, label_b_pre)
masks_b_pre = create_segmasks(results_b_pre)
masks_b_pre = dilate_masks(masks_b_pre, dd_dilation_factor_b, 1)
masks_b_pre = offset_masks(masks_b_pre,dd_offset_x_b, dd_offset_y_b)
if (len(masks_b_pre) > 0):
results_b_pre = update_result_masks(results_b_pre, masks_b_pre)
segmask_preview_b = create_segmask_preview(results_b_pre, init_image)
shared.state.current_image = segmask_preview_b
if ( opts.dd_save_previews):
images.save_image(segmask_preview_b, opts.outdir_ddetailer_previews, "", start_seed, p.prompt, opts.samples_format, p=p)
gen_count = len(masks_b_pre)
state.job_count += gen_count
print(f"Processing {gen_count} model {label_b_pre} detections for output generation {n + 1}.")
p.seed = start_seed
p.init_images = [init_image]
for i in range(gen_count):
p.image_mask = masks_b_pre[i]
if ( opts.dd_save_masks):
images.save_image(masks_b_pre[i], opts.outdir_ddetailer_masks, "", start_seed, p.prompt, opts.samples_format, p=p)
processed = processing.process_images(p)
p.seed = processed.seed + 1
p.init_images = processed.images
if (gen_count > 0):
output_images[n] = processed.images[0]
init_image = processed.images[0]
else:
print(f"No model B detections for output generation {n} with current settings.")
# Primary run
if (dd_model_a != "None"):
label_a = "A"
if (dd_model_b != "None" and dd_bitwise_op != "None"):
label_a = dd_bitwise_op
results_a = inference(init_image, dd_model_a, dd_conf_a/100.0, label_a)
masks_a = create_segmasks(results_a)
masks_a = dilate_masks(masks_a, dd_dilation_factor_a, 1)
masks_a = offset_masks(masks_a,dd_offset_x_a, dd_offset_y_a)
if (dd_model_b != "None" and dd_bitwise_op != "None"):
label_b = "B"
results_b = inference(init_image, dd_model_b, dd_conf_b/100.0, label_b)
masks_b = create_segmasks(results_b)
masks_b = dilate_masks(masks_b, dd_dilation_factor_b, 1)
masks_b = offset_masks(masks_b,dd_offset_x_b, dd_offset_y_b)
if (len(masks_b) > 0):
combined_mask_b = combine_masks(masks_b)
for i in reversed(range(len(masks_a))):
if (dd_bitwise_op == "A&B"):
masks_a[i] = bitwise_and_masks(masks_a[i], combined_mask_b)
elif (dd_bitwise_op == "A-B"):
masks_a[i] = subtract_masks(masks_a[i], combined_mask_b)
if (is_allblack(masks_a[i])):
del masks_a[i]
for result in results_a:
del result[i]
else:
print("No model B detections to overlap with model A masks")
results_a = []
masks_a = []
if (len(masks_a) > 0):
results_a = update_result_masks(results_a, masks_a)
segmask_preview_a = create_segmask_preview(results_a, init_image)
shared.state.current_image = segmask_preview_a
if ( opts.dd_save_previews):
images.save_image(segmask_preview_a, opts.outdir_ddetailer_previews, "", start_seed, p.prompt, opts.samples_format, p=p)
gen_count = len(masks_a)
state.job_count += gen_count
print(f"Processing {gen_count} model {label_a} detections for output generation {n + 1}.")
p.seed = start_seed
p.init_images = [init_image]
for i in range(gen_count):
p.image_mask = masks_a[i]
if ( opts.dd_save_masks):
images.save_image(masks_a[i], opts.outdir_ddetailer_masks, "", start_seed, p.prompt, opts.samples_format, p=p)
processed = processing.process_images(p)
if initial_info is None:
initial_info = processed.info
p.seed = processed.seed + 1
p.init_images = processed.images
if (gen_count > 0):
output_images[n] = processed.images[0]
if ( opts.samples_save ):
images.save_image(processed.images[0], p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
else:
print(f"No model {label_a} detections for output generation {n} with current settings.")
state.job = f"Generation {n + 1} out of {state.job_count}"
if (initial_info is None):
initial_info = "No detections found."
return Processed(p, output_images, seed, initial_info)
def modeldataset(model_shortname):
path = modelpath(model_shortname)
if ("mmdet" in path and "segm" in path):
dataset = 'coco'
else:
dataset = 'bbox'
return dataset
def modelpath(model_shortname):
model_list = modelloader.load_models(model_path=dd_models_path, ext_filter=[".pth"])
model_h = model_shortname.split("[")[-1].split("]")[0]
for path in model_list:
if ( model_hash(path) == model_h):
return path
def update_result_masks(results, masks):
for i in range(len(masks)):
boolmask = np.array(masks[i], dtype=bool)
results[2][i] = boolmask
return results
def create_segmask_preview(results, image):
labels = results[0]
bboxes = results[1]
segms = results[2]
cv2_image = np.array(image)
cv2_image = cv2_image[:, :, ::-1].copy()
for i in range(len(segms)):
color = np.full_like(cv2_image, np.random.randint(100, 256, (1, 3), dtype=np.uint8))
alpha = 0.2
color_image = cv2.addWeighted(cv2_image, alpha, color, 1-alpha, 0)
cv2_mask = segms[i].astype(np.uint8) * 255
cv2_mask_bool = np.array(segms[i], dtype=bool)
centroid = np.mean(np.argwhere(cv2_mask_bool),axis=0)
centroid_x, centroid_y = int(centroid[1]), int(centroid[0])
cv2_mask_rgb = cv2.merge((cv2_mask, cv2_mask, cv2_mask))
cv2_image = np.where(cv2_mask_rgb == 255, color_image, cv2_image)
text_color = tuple([int(x) for x in ( color[0][0] - 100 )])
name = labels[i]
score = bboxes[i][4]
score = str(score)[:4]
text = name + ":" + score
cv2.putText(cv2_image, text, (centroid_x - 30, centroid_y), cv2.FONT_HERSHEY_DUPLEX, 0.4, text_color, 1, cv2.LINE_AA)
if ( len(segms) > 0):
preview_image = Image.fromarray(cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB))
else:
preview_image = image
return preview_image
def is_allblack(mask):
cv2_mask = np.array(mask)
return cv2.countNonZero(cv2_mask) == 0
def bitwise_and_masks(mask1, mask2):
cv2_mask1 = np.array(mask1)
cv2_mask2 = np.array(mask2)
cv2_mask = cv2.bitwise_and(cv2_mask1, cv2_mask2)
mask = Image.fromarray(cv2_mask)
return mask
def subtract_masks(mask1, mask2):
cv2_mask1 = np.array(mask1)
cv2_mask2 = np.array(mask2)
cv2_mask = cv2.subtract(cv2_mask1, cv2_mask2)
mask = Image.fromarray(cv2_mask)
return mask
def dilate_masks(masks, dilation_factor, iter=1):
if dilation_factor == 0:
return masks
dilated_masks = []
kernel = np.ones((dilation_factor,dilation_factor), np.uint8)
for i in range(len(masks)):
cv2_mask = np.array(masks[i])
dilated_mask = cv2.dilate(cv2_mask, kernel, iter)
dilated_masks.append(Image.fromarray(dilated_mask))
return dilated_masks
def offset_masks(masks, offset_x, offset_y):
if (offset_x == 0 and offset_y == 0):
return masks
offset_masks = []
for i in range(len(masks)):
cv2_mask = np.array(masks[i])
offset_mask = cv2_mask.copy()
offset_mask = np.roll(offset_mask, -offset_y, axis=0)
offset_mask = np.roll(offset_mask, offset_x, axis=1)
offset_masks.append(Image.fromarray(offset_mask))
return offset_masks
def combine_masks(masks):
initial_cv2_mask = np.array(masks[0])
combined_cv2_mask = initial_cv2_mask
for i in range(1, len(masks)):
cv2_mask = np.array(masks[i])
combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
combined_mask = Image.fromarray(combined_cv2_mask)
return combined_mask
def on_ui_settings():
shared.opts.add_option("dd_save_previews", shared.OptionInfo(False, "Save mask previews", section=("ddetailer", "Detection Detailer")))
shared.opts.add_option("outdir_ddetailer_previews", shared.OptionInfo("extensions/ddetailer/outputs/masks-previews", 'Output directory for mask previews', section=("ddetailer", "Detection Detailer")))
shared.opts.add_option("dd_save_masks", shared.OptionInfo(False, "Save masks", section=("ddetailer", "Detection Detailer")))
shared.opts.add_option("outdir_ddetailer_masks", shared.OptionInfo("extensions/ddetailer/outputs/masks", 'Output directory for masks', section=("ddetailer", "Detection Detailer")))
def create_segmasks(results):
segms = results[2]
segmasks = []
for i in range(len(segms)):
cv2_mask = segms[i].astype(np.uint8) * 255
mask = Image.fromarray(cv2_mask)
segmasks.append(mask)
return segmasks
import mmcv
from mmdet.core import get_classes
from mmdet.apis import (inference_detector,
init_detector)
def get_device():
device_id = shared.cmd_opts.device_id
if device_id is not None:
cuda_device = f"cuda:{device_id}"
else:
cuda_device = "cpu"
return cuda_device
def inference(image, modelname, conf_thres, label):
path = modelpath(modelname)
if ( "mmdet" in path and "bbox" in path ):
results = inference_mmdet_bbox(image, modelname, conf_thres, label)
elif ( "mmdet" in path and "segm" in path):
results = inference_mmdet_segm(image, modelname, conf_thres, label)
return results
def inference_mmdet_segm(image, modelname, conf_thres, label):
model_checkpoint = modelpath(modelname)
model_config = os.path.splitext(model_checkpoint)[0] + ".py"
model_device = get_device()
model = init_detector(model_config, model_checkpoint, device=model_device)
mmdet_results = inference_detector(model, np.array(image))
bbox_results, segm_results = mmdet_results
dataset = modeldataset(modelname)
classes = get_classes(dataset)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_results)
]
n,m = bbox_results[0].shape
if (n == 0):
return [[],[],[]]
labels = np.concatenate(labels)
bboxes = np.vstack(bbox_results)
segms = mmcv.concat_list(segm_results)
filter_inds = np.where(bboxes[:,-1] > conf_thres)[0]
results = [[],[],[]]
for i in filter_inds:
results[0].append(label + "-" + classes[labels[i]])
results[1].append(bboxes[i])
results[2].append(segms[i])
return results
def inference_mmdet_bbox(image, modelname, conf_thres, label):
model_checkpoint = modelpath(modelname)
model_config = os.path.splitext(model_checkpoint)[0] + ".py"
model_device = get_device()
model = init_detector(model_config, model_checkpoint, device=model_device)
results = inference_detector(model, np.array(image))
cv2_image = np.array(image)
cv2_image = cv2_image[:, :, ::-1].copy()
cv2_gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY)
segms = []
for (x0, y0, x1, y1, conf) in results[0]:
cv2_mask = np.zeros((cv2_gray.shape), np.uint8)
cv2.rectangle(cv2_mask, (int(x0), int(y0)), (int(x1), int(y1)), 255, -1)
cv2_mask_bool = cv2_mask.astype(bool)
segms.append(cv2_mask_bool)
n,m = results[0].shape
if (n == 0):
return [[],[],[]]
bboxes = np.vstack(results[0])
filter_inds = np.where(bboxes[:,-1] > conf_thres)[0]
results = [[],[],[]]
for i in filter_inds:
results[0].append(label)
results[1].append(bboxes[i])
results[2].append(segms[i])
return results
script_callbacks.on_ui_settings(on_ui_settings)